Oxygen Vacancies-Mediated Z-Scheme Mechanism Promotes Synergistic Photoelectrocatalysis for Hydroxyl Radical and Singlet Oxygen-Cooperating on Selective Pollutant Degradation
Duoduo Fang, Di Luo, Han Xiao, Jiaxing Li, Lin Ma, Jiangzhi Zi and Zichao Lian*,
{"title":"Oxygen Vacancies-Mediated Z-Scheme Mechanism Promotes Synergistic Photoelectrocatalysis for Hydroxyl Radical and Singlet Oxygen-Cooperating on Selective Pollutant Degradation","authors":"Duoduo Fang, Di Luo, Han Xiao, Jiaxing Li, Lin Ma, Jiangzhi Zi and Zichao Lian*, ","doi":"10.1021/acsestengg.4c0045310.1021/acsestengg.4c00453","DOIUrl":null,"url":null,"abstract":"<p >Achieving high effective degradation of organic pollutants in sewage having adverse effects on human health and ecosystems remains a major challenge. In this study, an oxygen vacancy (O<sub>v</sub>)-mediated Z-scheme Co<sub>3</sub>O<sub>4</sub>/O<sub>v</sub>-TiO<sub>2</sub> heterojunction was first reported for simultaneous selective photoelectrocatalytic pollutant degradation and hydrogen production under visible light irradiation. The optimized Co<sub>3</sub>O<sub>4</sub>/O<sub>v</sub>-TiO<sub>2</sub> exhibited excellent photoelectrocatalytic performance in the degradation of the organic pollutants under visible light irradiation due to the formation of a Z-scheme heterojunction for the utilization of highly reductive photogenerated electrons and oxidative holes. The mechanistic investigation suggested that the synergistic effects of hydroxyl radical and singlet oxygen as the dominant reactive species facilitated the ring-open reactions of the rhodamine B for the mineralization processes. This work provides a deep understanding of designing Z-scheme heterojunction photoelectrocatalysts through defect engineering technologies for sewage treatment.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 1","pages":"77–85 77–85"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving high effective degradation of organic pollutants in sewage having adverse effects on human health and ecosystems remains a major challenge. In this study, an oxygen vacancy (Ov)-mediated Z-scheme Co3O4/Ov-TiO2 heterojunction was first reported for simultaneous selective photoelectrocatalytic pollutant degradation and hydrogen production under visible light irradiation. The optimized Co3O4/Ov-TiO2 exhibited excellent photoelectrocatalytic performance in the degradation of the organic pollutants under visible light irradiation due to the formation of a Z-scheme heterojunction for the utilization of highly reductive photogenerated electrons and oxidative holes. The mechanistic investigation suggested that the synergistic effects of hydroxyl radical and singlet oxygen as the dominant reactive species facilitated the ring-open reactions of the rhodamine B for the mineralization processes. This work provides a deep understanding of designing Z-scheme heterojunction photoelectrocatalysts through defect engineering technologies for sewage treatment.
期刊介绍:
ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources.
The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope.
Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.