Semi-solid State PVA-Sodium Silicate Gel Membrane Cell for Electrochemical Oxidation of Gaseous Acetaldehyde at Cobalt Immobilized Graphitic Carbon Nitride Electrode

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL
Muthuraman Govindan, Elangovan Erusappan, Youngyu Choi and Daekeun Kim*, 
{"title":"Semi-solid State PVA-Sodium Silicate Gel Membrane Cell for Electrochemical Oxidation of Gaseous Acetaldehyde at Cobalt Immobilized Graphitic Carbon Nitride Electrode","authors":"Muthuraman Govindan,&nbsp;Elangovan Erusappan,&nbsp;Youngyu Choi and Daekeun Kim*,&nbsp;","doi":"10.1021/acsestengg.4c0050510.1021/acsestengg.4c00505","DOIUrl":null,"url":null,"abstract":"<p >The removal of gas environmental pollutants from their gaseous state using electrochemical methods is a futuristic technology. The effective migration of ions to the electrode without liquid electrolyte plays a key role in facilitating the removal from the gaseous state. In this study, a poly(vinyl alcohol)-sodium silicate gel membrane and a cobalt-modified graphitic carbon nitride (Co-GCN) electrode were developed for the mineralization of a common air pollutant, acetaldehyde (AA). Confocal laser microscopy, electrochemical impedance spectroscopy, and SEM-EDS analysis demonstrated that the as-prepared gel membrane stably conducts ions with lower resistance. The analysis of Co-GCN using XRD, FTIR, and cyclic voltammetry show a possible coordination of cobalt ions with GCN. At a given applied potential of 0.8 V, 82% removal of AA (80 ppm in 1 h) was achieved. The electron transfer kinetics follow pseudo-first-order kinetics, as the variation in the removal rate is less over a wide range of AA feed concentrations. For applied potentials above 1 V, the complete formation of CO<sub>2</sub> was equivalent to AA removal, with a formation capacity of 1.37 g cm<sup>–2</sup> h<sup>–1</sup>. The seed of this first attempt at gaseous AA mineralization may open a new way to remove environmental gaseous pollutants.</p>","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"5 1","pages":"239–249 239–249"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestengg.4c00505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The removal of gas environmental pollutants from their gaseous state using electrochemical methods is a futuristic technology. The effective migration of ions to the electrode without liquid electrolyte plays a key role in facilitating the removal from the gaseous state. In this study, a poly(vinyl alcohol)-sodium silicate gel membrane and a cobalt-modified graphitic carbon nitride (Co-GCN) electrode were developed for the mineralization of a common air pollutant, acetaldehyde (AA). Confocal laser microscopy, electrochemical impedance spectroscopy, and SEM-EDS analysis demonstrated that the as-prepared gel membrane stably conducts ions with lower resistance. The analysis of Co-GCN using XRD, FTIR, and cyclic voltammetry show a possible coordination of cobalt ions with GCN. At a given applied potential of 0.8 V, 82% removal of AA (80 ppm in 1 h) was achieved. The electron transfer kinetics follow pseudo-first-order kinetics, as the variation in the removal rate is less over a wide range of AA feed concentrations. For applied potentials above 1 V, the complete formation of CO2 was equivalent to AA removal, with a formation capacity of 1.37 g cm–2 h–1. The seed of this first attempt at gaseous AA mineralization may open a new way to remove environmental gaseous pollutants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信