Impact of Mg Substitution on the Structure, Stability, and Properties of the Na2Fe2F7 Weberite Cathode

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Hanna Z. Porter, Emily E. Foley, Wen Jin, Eric Chen, Erick A. Lawrence, Euan N. Bassey and Raphaële J. Clément*, 
{"title":"Impact of Mg Substitution on the Structure, Stability, and Properties of the Na2Fe2F7 Weberite Cathode","authors":"Hanna Z. Porter,&nbsp;Emily E. Foley,&nbsp;Wen Jin,&nbsp;Eric Chen,&nbsp;Erick A. Lawrence,&nbsp;Euan N. Bassey and Raphaële J. Clément*,&nbsp;","doi":"10.1021/acsmaterialsau.4c0009010.1021/acsmaterialsau.4c00090","DOIUrl":null,"url":null,"abstract":"<p >Of the few weberite-type Na-ion cathodes explored to date, Na<sub>2</sub>Fe<sub>2</sub>F<sub>7</sub> exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure–property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy Na<i><sub>y</sub></i>FeF<sub>3</sub> perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg<sup>2+</sup> and Al<sup>3+</sup> predicts an enhanced thermodynamic stability of Na<sub>2</sub>Mg<i><sub>x</sub></i>Fe<sub>2–<i>x</i></sub> F<sub>7</sub> as the Mg content is increased, and the <i>x</i> = 0.125 composition is selected for further exploration. We demonstrate that the monoclinic polymorph (space group <i>C</i>2/c) of Na<sub>2</sub>Fe<sub>2</sub>F<sub>7</sub> (Mg0) and of a new Mg-substituted weberite composition, Na<sub>2</sub>Mg<sub>0.125</sub>Fe<sub>1.875</sub>F<sub>7</sub> (Mg0.125), can be isolated using an optimized synthesis protocol. The impact of Mg substitution on the stability of the weberite phase during electrochemical cycling, and on the extent and rate of Na (de)intercalation, is examined. Irrespective of the Mg content, we find that the weberite phase is retained when cycling over a narrow voltage window (2.8–4.0 V vs Na/Na<sup>+</sup>). Over a wider voltage range (1.9–4.0 V), Mg0 shows steady capacity fade due to its transformation to the Na<i><sub>y</sub></i>FeF<sub>3</sub> perovskite phase, while Mg0.125 displays more reversible cycling and a reduced phase transformation. Yet, Mg incorporation also leads to kinetically limited Na extraction and a reduced overall capacity. These findings highlight the need for the continued compositional optimization of weberite cathodes to improve their structural stability while maximizing their energy density.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"170–181 170–181"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Of the few weberite-type Na-ion cathodes explored to date, Na2Fe2F7 exhibits the best performance, with capacities up to 184 mAh/g and energy densities up to 550 Wh/kg reported for this material. However, the development of robust structure–property relationships for this material is complicated by its tendency to form as a mixture of metastable polymorphs, and transform to a lower-energy NayFeF3 perovskite compound during electrochemical cycling. Our first-principles-guided exploration of Fe-based weberite solid solutions with redox-inactive Mg2+ and Al3+ predicts an enhanced thermodynamic stability of Na2MgxFe2–x F7 as the Mg content is increased, and the x = 0.125 composition is selected for further exploration. We demonstrate that the monoclinic polymorph (space group C2/c) of Na2Fe2F7 (Mg0) and of a new Mg-substituted weberite composition, Na2Mg0.125Fe1.875F7 (Mg0.125), can be isolated using an optimized synthesis protocol. The impact of Mg substitution on the stability of the weberite phase during electrochemical cycling, and on the extent and rate of Na (de)intercalation, is examined. Irrespective of the Mg content, we find that the weberite phase is retained when cycling over a narrow voltage window (2.8–4.0 V vs Na/Na+). Over a wider voltage range (1.9–4.0 V), Mg0 shows steady capacity fade due to its transformation to the NayFeF3 perovskite phase, while Mg0.125 displays more reversible cycling and a reduced phase transformation. Yet, Mg incorporation also leads to kinetically limited Na extraction and a reduced overall capacity. These findings highlight the need for the continued compositional optimization of weberite cathodes to improve their structural stability while maximizing their energy density.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信