Supramolecular Ionic Gels for Stretchable Electronics and Future Directions

IF 5.7 Q2 CHEMISTRY, PHYSICAL
Shunsuke Yamada*,  and , Takashi Honda, 
{"title":"Supramolecular Ionic Gels for Stretchable Electronics and Future Directions","authors":"Shunsuke Yamada*,&nbsp; and ,&nbsp;Takashi Honda,&nbsp;","doi":"10.1021/acsmaterialsau.4c0010010.1021/acsmaterialsau.4c00100","DOIUrl":null,"url":null,"abstract":"<p >Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve. Herein, we review recent material designs and interactions used for fabricating SIGs, such as ionic interactions and hydrogen bonding. We present SIG characteristics achieved via the interaction of polymers and ILs, such as extreme toughness, self-healing capability, and self-adhesion favorable for human body sensors. We conclude this Perspective by discussing the potential of SIGs as a power source for implants, wearable devices, and environmental sensing applications.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"5 1","pages":"35–44 35–44"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.4c00100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.4c00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve. Herein, we review recent material designs and interactions used for fabricating SIGs, such as ionic interactions and hydrogen bonding. We present SIG characteristics achieved via the interaction of polymers and ILs, such as extreme toughness, self-healing capability, and self-adhesion favorable for human body sensors. We conclude this Perspective by discussing the potential of SIGs as a power source for implants, wearable devices, and environmental sensing applications.

用于可拉伸电子学的超分子离子凝胶及其未来方向
离子凝胶(IGs)、离子液体(ILs)分散在聚合物中,具有极低的蒸气压、电化学和热稳定性以及优异的机械特性;因此,它们被用于制造可拉伸传感器、电化学晶体管和能量存储设备。虽然这些特性对柔性和可拉伸电子器件很有希望,但由于键之间的不可逆相互作用,形成聚合物网络的机械应力诱导的断裂共价键无法恢复。通过非共价键的物理交联使聚合物和il相互作用形成超分子ig (SIGs),这对于可穿戴设备具有传统非共价键ig无法实现的有利特性。在此,我们回顾了最近用于制造SIGs的材料设计和相互作用,如离子相互作用和氢键。我们提出了通过聚合物和ILs相互作用实现的SIG特性,如极端韧性、自修复能力和有利于人体传感器的自粘附性。我们通过讨论SIGs作为植入物、可穿戴设备和环境传感应用的电源的潜力来总结本展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Au
ACS Materials Au 材料科学-
CiteScore
5.00
自引率
0.00%
发文量
0
期刊介绍: ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信