High-Reflectivity Force-Chromic Photonic Crystal Elastic Materials Based on Nanospheres within an Elastomer for Applications in Sensing and Textile Fields

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhichuang Qi, Yang Pang, Liangliang Cui, Zhangmi Huang, Chunyan Hu and Baojiang Liu*, 
{"title":"High-Reflectivity Force-Chromic Photonic Crystal Elastic Materials Based on Nanospheres within an Elastomer for Applications in Sensing and Textile Fields","authors":"Zhichuang Qi,&nbsp;Yang Pang,&nbsp;Liangliang Cui,&nbsp;Zhangmi Huang,&nbsp;Chunyan Hu and Baojiang Liu*,&nbsp;","doi":"10.1021/acsanm.4c0654510.1021/acsanm.4c06545","DOIUrl":null,"url":null,"abstract":"<p >By mimicking the biological process in which chameleons change the lattice spacing of guanine nanocrystals to form and regulate their skin color, scientists have prepared force-chromic photonic crystal materials (FPMs) by encapsulating arrays of photonic crystal nanospheres in elastic matrices. However, the low refractive index difference (Δ<i>n</i>) between conventional nanospheres and elastic matrix combinations typically makes the photonic material transparent and with low color reflectance. Besides, the elastic matrix is mostly dominated by hydrogel materials, which gradually decrease or even lose the stability of the sensing material as the solvent evaporates. PS@SiO<sub>2</sub> core–shell nanospheres with a high refractive index while reducing the risk of microplasticity are ideal for preparing FPMs. In this work, we explored the preparation method of PS@SiO<sub>2</sub> nanospheres and prepared force-chromic photonic crystal elastomers (FPEs) by embedding them into di(ethylene glycol) ethyl ether acrylate (DEGEEA) and polyethylene glycol monophenyl ester acrylate (PEGPEA) matrices via the coassembly method. It was found that due to the large Δ<i>n</i> between PS@SiO<sub>2</sub> nanospheres and acrylate matrices (Δ<i>n</i> &gt; 0.05), the FPE possessed a high reflectivity (<i>R</i> &gt; 82%), and the color change under force stimulation is obvious. Meanwhile, the FPE had a good tensile strain and a high sensitivity (1.62 nm/%). Due to the absence of solvents in the elastic system, the FPE has excellent stability, and the structural color remains unchanged under 50 stretch/release cycling experiments. This FPE not only has a simple preparation method, fast response, high reflectivity, and good stability, but we have found through validation experiments that it has great potential in the fields of sensing, signal transmission, and smart textiles.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 3","pages":"1605–1616 1605–1616"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06545","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By mimicking the biological process in which chameleons change the lattice spacing of guanine nanocrystals to form and regulate their skin color, scientists have prepared force-chromic photonic crystal materials (FPMs) by encapsulating arrays of photonic crystal nanospheres in elastic matrices. However, the low refractive index difference (Δn) between conventional nanospheres and elastic matrix combinations typically makes the photonic material transparent and with low color reflectance. Besides, the elastic matrix is mostly dominated by hydrogel materials, which gradually decrease or even lose the stability of the sensing material as the solvent evaporates. PS@SiO2 core–shell nanospheres with a high refractive index while reducing the risk of microplasticity are ideal for preparing FPMs. In this work, we explored the preparation method of PS@SiO2 nanospheres and prepared force-chromic photonic crystal elastomers (FPEs) by embedding them into di(ethylene glycol) ethyl ether acrylate (DEGEEA) and polyethylene glycol monophenyl ester acrylate (PEGPEA) matrices via the coassembly method. It was found that due to the large Δn between PS@SiO2 nanospheres and acrylate matrices (Δn > 0.05), the FPE possessed a high reflectivity (R > 82%), and the color change under force stimulation is obvious. Meanwhile, the FPE had a good tensile strain and a high sensitivity (1.62 nm/%). Due to the absence of solvents in the elastic system, the FPE has excellent stability, and the structural color remains unchanged under 50 stretch/release cycling experiments. This FPE not only has a simple preparation method, fast response, high reflectivity, and good stability, but we have found through validation experiments that it has great potential in the fields of sensing, signal transmission, and smart textiles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信