Structure Characterization of a Disordered Peptide Using In-Droplet Hydrogen/Deuterium Exchange Mass Spectrometry and Molecular Dynamics

IF 3.7 Q2 CHEMISTRY, PHYSICAL
Mohammad A. Rahman, Mst Nigar Sultana, Daud Sharif, Sultan Mahmud, Justin Legleiter, Peng Li, Blake Mertz* and Stephen J. Valentine*, 
{"title":"Structure Characterization of a Disordered Peptide Using In-Droplet Hydrogen/Deuterium Exchange Mass Spectrometry and Molecular Dynamics","authors":"Mohammad A. Rahman,&nbsp;Mst Nigar Sultana,&nbsp;Daud Sharif,&nbsp;Sultan Mahmud,&nbsp;Justin Legleiter,&nbsp;Peng Li,&nbsp;Blake Mertz* and Stephen J. Valentine*,&nbsp;","doi":"10.1021/acsphyschemau.4c0004810.1021/acsphyschemau.4c00048","DOIUrl":null,"url":null,"abstract":"<p >In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates (<i>k</i><sub>int</sub>) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated. Additionally, the model is used to describe the degree of conformational flexibility and structural bias for the disease-relevant Nt17 peptide; although highly flexible, intrinsically primed for facile conversion to α-helical conformation upon binding with molecular partners imparts significant in-droplet HDX protection for this peptide. In the future, a scale may be developed whereby HDX reactivity is predictive of the degree of structural flexibility and bias (propensity to form 2° structural elements such as α-helix, β-sheet, and β-turn) for intrinsically disordered regions (IDRs). Such structural resolution may ultimately be used for high-throughput screening of IDR structural transformation(s) upon binding of ligands such as drug candidates.</p>","PeriodicalId":29796,"journal":{"name":"ACS Physical Chemistry Au","volume":"5 1","pages":"17–29 17–29"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsphyschemau.4c00048","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Physical Chemistry Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsphyschemau.4c00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates (kint) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated. Additionally, the model is used to describe the degree of conformational flexibility and structural bias for the disease-relevant Nt17 peptide; although highly flexible, intrinsically primed for facile conversion to α-helical conformation upon binding with molecular partners imparts significant in-droplet HDX protection for this peptide. In the future, a scale may be developed whereby HDX reactivity is predictive of the degree of structural flexibility and bias (propensity to form 2° structural elements such as α-helix, β-sheet, and β-turn) for intrinsically disordered regions (IDRs). Such structural resolution may ultimately be used for high-throughput screening of IDR structural transformation(s) upon binding of ligands such as drug candidates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊介绍: ACS Physical Chemistry Au is an open access journal which publishes original fundamental and applied research on all aspects of physical chemistry. The journal publishes new and original experimental computational and theoretical research of interest to physical chemists biophysical chemists chemical physicists physicists material scientists and engineers. An essential criterion for acceptance is that the manuscript provides new physical insight or develops new tools and methods of general interest. Some major topical areas include:Molecules Clusters and Aerosols; Biophysics Biomaterials Liquids and Soft Matter; Energy Materials and Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信