Electronic Structure Design in High-Entropy Oxides: Enabling Frequency-Dependent Dielectric Behavior for Advanced Applications

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hashan N. Thenuwara, Huei-Jyun Shih, Hasanthi L. Senevirathna, Ying-Chieh Lee, Xu Li and Ping Wu*, 
{"title":"Electronic Structure Design in High-Entropy Oxides: Enabling Frequency-Dependent Dielectric Behavior for Advanced Applications","authors":"Hashan N. Thenuwara,&nbsp;Huei-Jyun Shih,&nbsp;Hasanthi L. Senevirathna,&nbsp;Ying-Chieh Lee,&nbsp;Xu Li and Ping Wu*,&nbsp;","doi":"10.1021/acsaelm.4c0197910.1021/acsaelm.4c01979","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the design of an electronic structure in a defect-engineered (MgCoNiCuZn)O high-entropy oxide (HEO), demonstrating distinct frequency-dependent dielectric behavior enabled by a complex microstructure. Detailed structural analysis reveals a phase transformation from a multiphase mixture at lower calcination temperatures to a stable, single-phase rock-salt structure at 1000 °C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) mapping show unique elemental domain segregation, with p-type (Cu, Ni, Co) and n-type (Zn, Mg) semiconductor domains forming multiple internal interfaces. These interfaces facilitate two key polarization mechanisms: (1) interfacial (Maxwell–Wagner–Sillars) polarization within grains, driven by charge accumulation at domain boundaries, and (2) space charge polarization across grain boundaries. Dielectric measurements reveal strong frequency dependence, with high dielectric properties at low frequencies suitable for charging applications and reduced dielectric values at high frequencies, beneficial for discharging processes such as regenerative braking in electric vehicles. This work demonstrates the potential of electronic structure design in HEOs to tailor dielectric properties for advanced applications, including tunable radio frequency (RF) devices, wireless communication, adaptive energy storage systems, and electric vehicle technologies.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 2","pages":"831–837 831–837"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.4c01979","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the design of an electronic structure in a defect-engineered (MgCoNiCuZn)O high-entropy oxide (HEO), demonstrating distinct frequency-dependent dielectric behavior enabled by a complex microstructure. Detailed structural analysis reveals a phase transformation from a multiphase mixture at lower calcination temperatures to a stable, single-phase rock-salt structure at 1000 °C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) mapping show unique elemental domain segregation, with p-type (Cu, Ni, Co) and n-type (Zn, Mg) semiconductor domains forming multiple internal interfaces. These interfaces facilitate two key polarization mechanisms: (1) interfacial (Maxwell–Wagner–Sillars) polarization within grains, driven by charge accumulation at domain boundaries, and (2) space charge polarization across grain boundaries. Dielectric measurements reveal strong frequency dependence, with high dielectric properties at low frequencies suitable for charging applications and reduced dielectric values at high frequencies, beneficial for discharging processes such as regenerative braking in electric vehicles. This work demonstrates the potential of electronic structure design in HEOs to tailor dielectric properties for advanced applications, including tunable radio frequency (RF) devices, wireless communication, adaptive energy storage systems, and electric vehicle technologies.

Abstract Image

高熵氧化物的电子结构设计:为高级应用实现频率相关介电行为
本研究研究了缺陷工程(MgCoNiCuZn)O高熵氧化物(HEO)的电子结构设计,展示了复杂微观结构实现的不同频率依赖的介电行为。详细的结构分析表明,在较低的煅烧温度下,多相混合物转变为1000°C时稳定的单相岩盐结构。扫描电镜(SEM)和能量色散x射线能谱(EDS)图显示出独特的元素畴偏析,p型(Cu, Ni, Co)和n型(Zn, Mg)半导体畴形成多个内部界面。这些界面促进了两种关键的极化机制:(1)界面(Maxwell-Wagner-Sillars)极化,由畴边界处的电荷积累驱动;(2)跨晶界的空间电荷极化。电介质测量显示出很强的频率依赖性,在低频时具有较高的电介质特性,适合充电应用,而在高频时具有较低的电介质值,有利于电动汽车的再生制动等放电过程。这项工作证明了heo中电子结构设计的潜力,可以为可调谐射频(RF)设备、无线通信、自适应储能系统和电动汽车技术等先进应用量身定制介电特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信