Organic Solid-State Electrolyte Synaptic Transistors with Photoinduced Thiol–Ene Cross-linked Polymer Electrolytes for Deep Neural Networks

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Qun-Gao Chen, Wei-Ting Liao, Rou-Yi Li, Ignacio Sanjuán, Ning-Cian Hsiao, Chan-Tat Ng, Ting-Ting Chang, Antonio Guerrero, Chu-Chen Chueh* and Wen-Ya Lee*, 
{"title":"Organic Solid-State Electrolyte Synaptic Transistors with Photoinduced Thiol–Ene Cross-linked Polymer Electrolytes for Deep Neural Networks","authors":"Qun-Gao Chen,&nbsp;Wei-Ting Liao,&nbsp;Rou-Yi Li,&nbsp;Ignacio Sanjuán,&nbsp;Ning-Cian Hsiao,&nbsp;Chan-Tat Ng,&nbsp;Ting-Ting Chang,&nbsp;Antonio Guerrero,&nbsp;Chu-Chen Chueh* and Wen-Ya Lee*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0251110.1021/acsmaterialslett.4c02511","DOIUrl":null,"url":null,"abstract":"<p >In this work, we describe a solid-state polymer electrolyte (SPE)-based electrolyte-gated organic field-effect transistors (EGOFETs) consisting of a thiol–ene-assisted photo-cross-linked nitrile butadiene rubber (NBR) network embedded with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte. The photocurable SPE film can be patterned with different dimensions by photolithography and exhibits excellent electronic properties and crucial synaptic behavior. The photocurable NBR/LiTFSI EGOFET exhibits a high transconductance of 11.9 mS and a high on/off ratio of 10<sup>5</sup> at a scan rate of 40 mV/s. Due to the strongly polarized nature of the photo-cross-linked NBR network and Li-ion diffusion, the NBR/LiTFSI device exhibits a significant current hysteresis, enabling synaptic-like learning and memory behavior. The NBR/LiTFSI device demonstrates a DNN of 91.9% handwritten digit recognition accuracy. This work demonstrates the potential of the solid-state NBR/LiTFSI EGOFET in creating highly efficient and low-energy neuromorphic devices.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 2","pages":"682–691 682–691"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c02511","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02511","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we describe a solid-state polymer electrolyte (SPE)-based electrolyte-gated organic field-effect transistors (EGOFETs) consisting of a thiol–ene-assisted photo-cross-linked nitrile butadiene rubber (NBR) network embedded with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) electrolyte. The photocurable SPE film can be patterned with different dimensions by photolithography and exhibits excellent electronic properties and crucial synaptic behavior. The photocurable NBR/LiTFSI EGOFET exhibits a high transconductance of 11.9 mS and a high on/off ratio of 105 at a scan rate of 40 mV/s. Due to the strongly polarized nature of the photo-cross-linked NBR network and Li-ion diffusion, the NBR/LiTFSI device exhibits a significant current hysteresis, enabling synaptic-like learning and memory behavior. The NBR/LiTFSI device demonstrates a DNN of 91.9% handwritten digit recognition accuracy. This work demonstrates the potential of the solid-state NBR/LiTFSI EGOFET in creating highly efficient and low-energy neuromorphic devices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信