{"title":"Scaling Behavior and Conductance Mechanisms of Ion Transport in Atomically Thin Graphene Nano/Subnanopores","authors":"Xiao-Yu Huang, Yangjun Cui, Cuifeng Ying*, Jianguo Tian and Zhibo Liu*, ","doi":"10.1021/acs.nanolett.4c0621810.1021/acs.nanolett.4c06218","DOIUrl":null,"url":null,"abstract":"<p >Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations. We introduce a conductance model that accurately predicts the observed scaling behavior by addressing the interaction between counterions and the edges of atomically thin pores, where counterion movement is constrained by the pore’s structure. This model also quantifies the hydration energy barrier, highlighting the impact of the hydration shell structures on ion transport efficiency. Our findings reveal that hydrated potassium ions traverse these pores with higher efficiency than previously estimated, offering new insights into ion transport mechanisms under atomic-scale confinement.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 4","pages":"1722–1728 1722–1728"},"PeriodicalIF":9.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c06218","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ion transport through atomically thin nano/subnanopores, such as those in monolayer graphene, presents challenges to traditional ion conduction models, primarily due to extreme confinement effects and hydration interactions. Under these conditions, existing models fail to account for conductance behaviors at the nano- and subnanometer scales. In this study, we perform a combined experimental and theoretical investigation of ion transport in monolayer graphene nano/subnanopores across varying salt concentrations. We introduce a conductance model that accurately predicts the observed scaling behavior by addressing the interaction between counterions and the edges of atomically thin pores, where counterion movement is constrained by the pore’s structure. This model also quantifies the hydration energy barrier, highlighting the impact of the hydration shell structures on ion transport efficiency. Our findings reveal that hydrated potassium ions traverse these pores with higher efficiency than previously estimated, offering new insights into ion transport mechanisms under atomic-scale confinement.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.