Achiral Plasmon Nanostructures for Identifying Single-Walled Carbon Nanotube Enantiomers via Enhancing Their Raman Optical Activity

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fanfan Lu, Guanghong Zhang, Lu Zhang*, Yifan Zhang, Yueweiying Wang, Jie Wang and Wending Zhang*, 
{"title":"Achiral Plasmon Nanostructures for Identifying Single-Walled Carbon Nanotube Enantiomers via Enhancing Their Raman Optical Activity","authors":"Fanfan Lu,&nbsp;Guanghong Zhang,&nbsp;Lu Zhang*,&nbsp;Yifan Zhang,&nbsp;Yueweiying Wang,&nbsp;Jie Wang and Wending Zhang*,&nbsp;","doi":"10.1021/acsanm.4c0658810.1021/acsanm.4c06588","DOIUrl":null,"url":null,"abstract":"<p >Single-walled carbon nanotube (SWCNT) enantiomers are useful for mechanism research and application exploration in optoelectronic components, integrated circuits, biophotonics, and other applications due to their tunable and uniformly responsive photoelectric properties. Herein, surface-enhanced Raman optical activity (ROA) was utilized to identify the structure and behavior of SWCNT enantiomers with a sensitivity of two to four SWCNTs/μm<sup>2</sup> driven by the achiral plasmon nanostructure. The achiral plasmon nanostructure with C<sub>6</sub> symmetry was adopted to convert far-field chiral light to significantly enhanced near-field light. The resultant Raman scattering intensities of SWCNT enantiomers with chiral indices of (7, 6) and (13, −6) have been increased ∼40 times by the achiral plasmon nanostructure compared with the SWCNT enantiomers dispersed on the silicon wafer by the same method. Thus, the difference of chiral near-field enhanced Raman scattering intensities of SWCNT enantiomers can break the limitation of the background noise to obtain the ROA spectra with vibrational-level information on target analytes. Our strategy provides a convenient and effective platform for identifying SWCNT enantiomers, as well as with extension function for ROA examination of molecular enantiomers.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 4","pages":"2000–2005 2000–2005"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06588","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-walled carbon nanotube (SWCNT) enantiomers are useful for mechanism research and application exploration in optoelectronic components, integrated circuits, biophotonics, and other applications due to their tunable and uniformly responsive photoelectric properties. Herein, surface-enhanced Raman optical activity (ROA) was utilized to identify the structure and behavior of SWCNT enantiomers with a sensitivity of two to four SWCNTs/μm2 driven by the achiral plasmon nanostructure. The achiral plasmon nanostructure with C6 symmetry was adopted to convert far-field chiral light to significantly enhanced near-field light. The resultant Raman scattering intensities of SWCNT enantiomers with chiral indices of (7, 6) and (13, −6) have been increased ∼40 times by the achiral plasmon nanostructure compared with the SWCNT enantiomers dispersed on the silicon wafer by the same method. Thus, the difference of chiral near-field enhanced Raman scattering intensities of SWCNT enantiomers can break the limitation of the background noise to obtain the ROA spectra with vibrational-level information on target analytes. Our strategy provides a convenient and effective platform for identifying SWCNT enantiomers, as well as with extension function for ROA examination of molecular enantiomers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信