An In Situ TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Alberto Casu*, Claudio Melis, Giorgio Divitini, Filippo Profumo, Mattia Lizzano, Francesca Borghi, Yurii P. Ivanov, Riccardo Dettori, Luciano Colombo, Paolo Milani and Andrea Falqui*, 
{"title":"An In Situ TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices","authors":"Alberto Casu*,&nbsp;Claudio Melis,&nbsp;Giorgio Divitini,&nbsp;Filippo Profumo,&nbsp;Mattia Lizzano,&nbsp;Francesca Borghi,&nbsp;Yurii P. Ivanov,&nbsp;Riccardo Dettori,&nbsp;Luciano Colombo,&nbsp;Paolo Milani and Andrea Falqui*,&nbsp;","doi":"10.1021/acsanm.4c0599310.1021/acsanm.4c05993","DOIUrl":null,"url":null,"abstract":"<p >This study explores the thermal evolution and depercolation processes in nanocomposite gold and zirconia thin films with a focus on their potential applications in neuromorphic devices. The behavior of gold nanostructured thin films under thermal stimuli, with and without zirconia inclusions, was examined utilizing both <i>in situ</i> heating transmission electron microscopy, upon low electron dose conditions, and molecular dynamics simulations. The initial experiments on pure gold films revealed a progressive retraction of gold clusters starting just above 100 °C, driven by thermally activated solid-state dewetting. This process continued up to 1000 °C, resulting in a significant reduction of the substrate area covered by gold from 47 to 10%. Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. Finally, this stabilization effect was found to be more pronounced when experimentally observed in films with higher zirconia content, where the depercolation process was significantly impeded. These results highlight the potential of zirconia as a stabilizing agent in nanostructured materials, enhancing the thermal resilience of the nanostructured gold films. They provide a viable pathway to tuning the thermal behavior of gold in nanocomposite thin films, paving the way for the development of energy-efficient neuromorphic devices capable of dynamic topological changes and autonomous task execution.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 4","pages":"1762–1772 1762–1772"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05993","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the thermal evolution and depercolation processes in nanocomposite gold and zirconia thin films with a focus on their potential applications in neuromorphic devices. The behavior of gold nanostructured thin films under thermal stimuli, with and without zirconia inclusions, was examined utilizing both in situ heating transmission electron microscopy, upon low electron dose conditions, and molecular dynamics simulations. The initial experiments on pure gold films revealed a progressive retraction of gold clusters starting just above 100 °C, driven by thermally activated solid-state dewetting. This process continued up to 1000 °C, resulting in a significant reduction of the substrate area covered by gold from 47 to 10%. Introducing zirconia into the gold films notably altered their thermal stability. Indeed, the presence of zirconia clusters limited the diffusivity of gold atoms, increasing the temperature threshold for depercolation and enhancing the film’s thermal stability. Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. Finally, this stabilization effect was found to be more pronounced when experimentally observed in films with higher zirconia content, where the depercolation process was significantly impeded. These results highlight the potential of zirconia as a stabilizing agent in nanostructured materials, enhancing the thermal resilience of the nanostructured gold films. They provide a viable pathway to tuning the thermal behavior of gold in nanocomposite thin films, paving the way for the development of energy-efficient neuromorphic devices capable of dynamic topological changes and autonomous task execution.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信