The Role of Solvent in Carbon Quantum Dot Synthesis on the Performance of MoS2 Nanosheet/Carbon Quantum Dot Heterostructures as Electrocatalysts for the Hydrogen Evolution Reaction

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fani Rahayu Hidayah Rayanisaputri, Didik Aryanto, Lazar Bijelić, Arturo Susarrey-Arce, Francisco Ruiz-Zepeda, Ferry Anggoro Ardy Nugroho and Vivi Fauzia*, 
{"title":"The Role of Solvent in Carbon Quantum Dot Synthesis on the Performance of MoS2 Nanosheet/Carbon Quantum Dot Heterostructures as Electrocatalysts for the Hydrogen Evolution Reaction","authors":"Fani Rahayu Hidayah Rayanisaputri,&nbsp;Didik Aryanto,&nbsp;Lazar Bijelić,&nbsp;Arturo Susarrey-Arce,&nbsp;Francisco Ruiz-Zepeda,&nbsp;Ferry Anggoro Ardy Nugroho and Vivi Fauzia*,&nbsp;","doi":"10.1021/acsanm.4c0606710.1021/acsanm.4c06067","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the effect of different solvents used in the synthesis of carbon quantum dots (CQDs) on the electrocatalytic performance of MoS<sub>2</sub>/CQD heterostructures for the hydrogen evolution reaction (HER). While previous research focused on CQDs synthesized with deionized water, little attention has been given to the influence of other solvents on CQD electrocatalytic behavior. To address this, we synthesized MoS<sub>2</sub> on 3D carbon cloths via a hydrothermal method and subsequently incorporated CQDs synthesized using deionized water, glycerol, and dimethylformamide (DMF). The choice of solvent significantly impacts their morphology, crystallinity, surface, and electrochemical properties. In particular, MoS<sub>2</sub> nanosheets became smaller with increased disordered structures and defect sites, particularly sulfur vacancies. Among the heterostructures, MoS<sub>2</sub>/CQDs-Glycerol showed superior performance, with an onset overpotential of 130 mV and Tafel slope of 53 mV/dec at 10 mA/cm<sup>2</sup>, outperforming MoS<sub>2</sub>/CQDs-DI (149 mV, 68 mV/dec) and MoS<sub>2</sub>/CQDs-DMF (185 mV, 106 mV/dec). The enhanced performance of MoS<sub>2</sub>/CQDs-Glycerol is attributed to its larger active surface area (<i>C</i><sub>dl</sub> of 228.7 mF/cm<sup>2</sup>) and lower charge transfer resistance (<i>R</i><sub><i>ct</i></sub> of 2.25 Ω), which may be due to the formation of more Mo–S edges on the vertical plane, serving as active sites. This study demonstrates that glycerol is the most effective solvent in CQD synthesis for enhancing HER performance by improving the morphology, surface properties, and charge transfer.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 3","pages":"1479–1489 1479–1489"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c06067","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of different solvents used in the synthesis of carbon quantum dots (CQDs) on the electrocatalytic performance of MoS2/CQD heterostructures for the hydrogen evolution reaction (HER). While previous research focused on CQDs synthesized with deionized water, little attention has been given to the influence of other solvents on CQD electrocatalytic behavior. To address this, we synthesized MoS2 on 3D carbon cloths via a hydrothermal method and subsequently incorporated CQDs synthesized using deionized water, glycerol, and dimethylformamide (DMF). The choice of solvent significantly impacts their morphology, crystallinity, surface, and electrochemical properties. In particular, MoS2 nanosheets became smaller with increased disordered structures and defect sites, particularly sulfur vacancies. Among the heterostructures, MoS2/CQDs-Glycerol showed superior performance, with an onset overpotential of 130 mV and Tafel slope of 53 mV/dec at 10 mA/cm2, outperforming MoS2/CQDs-DI (149 mV, 68 mV/dec) and MoS2/CQDs-DMF (185 mV, 106 mV/dec). The enhanced performance of MoS2/CQDs-Glycerol is attributed to its larger active surface area (Cdl of 228.7 mF/cm2) and lower charge transfer resistance (Rct of 2.25 Ω), which may be due to the formation of more Mo–S edges on the vertical plane, serving as active sites. This study demonstrates that glycerol is the most effective solvent in CQD synthesis for enhancing HER performance by improving the morphology, surface properties, and charge transfer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信