Yejun Yao, Die Huang, Pengbo Han, Xiaoluo Peng, Xin He, He Xu, Anjun Qin* and Ben Zhong Tang,
{"title":"Boric Acid Cross-Linking Strategy for Enhancing Room Temperature Phosphorescence of Poly(Vinyl Alcohol)-Doped Films","authors":"Yejun Yao, Die Huang, Pengbo Han, Xiaoluo Peng, Xin He, He Xu, Anjun Qin* and Ben Zhong Tang, ","doi":"10.1021/acsmaterialslett.4c0178810.1021/acsmaterialslett.4c01788","DOIUrl":null,"url":null,"abstract":"<p >Organic room temperature phosphorescence (RTP) has attracted increasing attention owing to its unique luminous properties and wide applications. However, the trade-off between the phosphorescence quantum yield (Φ<sub>Phos</sub>) and the phosphorescence lifetime (τ<sub>Phos</sub>) highlights the necessity for developing new strategies to enhance RTP performance. While research often focuses on guest components in polymer-based host–guest RTP systems, the host materials, which provide rigid environments, are less explored. This work introduces a simple and efficient strategy to develop RTP materials with high efficiency and long lifetime by employing covalent cross-linking to modify the rigidity of the polymer matrix. By suppressing nonradiative decay and decreasing luminescence quenching under ambient conditions, not only the Φ<sub>Phos</sub> of cross-linked films is improved from 3.2% to 13.5%, but also the τ<sub>Phos</sub> is extended from 482.34 to 625.23 ms. Thanks to its solution processability and water sensitivity, this RTP system was successfully applied in inkjet printing and binary anticounterfeiting.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 1","pages":"133–140 133–140"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01788","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic room temperature phosphorescence (RTP) has attracted increasing attention owing to its unique luminous properties and wide applications. However, the trade-off between the phosphorescence quantum yield (ΦPhos) and the phosphorescence lifetime (τPhos) highlights the necessity for developing new strategies to enhance RTP performance. While research often focuses on guest components in polymer-based host–guest RTP systems, the host materials, which provide rigid environments, are less explored. This work introduces a simple and efficient strategy to develop RTP materials with high efficiency and long lifetime by employing covalent cross-linking to modify the rigidity of the polymer matrix. By suppressing nonradiative decay and decreasing luminescence quenching under ambient conditions, not only the ΦPhos of cross-linked films is improved from 3.2% to 13.5%, but also the τPhos is extended from 482.34 to 625.23 ms. Thanks to its solution processability and water sensitivity, this RTP system was successfully applied in inkjet printing and binary anticounterfeiting.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.