η6 Organometallic Functionalization of Hexagonal Boron Nitride: Implications for Multifunctional Molecular and Nanoscale Interfaces on Electronic Applications

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kartikey Sharma, Songwei Che, Sanjay K. Behura, Naveen K. Dandu, Anika Shinde, Anh T. Ngo and Vikas Berry*, 
{"title":"η6 Organometallic Functionalization of Hexagonal Boron Nitride: Implications for Multifunctional Molecular and Nanoscale Interfaces on Electronic Applications","authors":"Kartikey Sharma,&nbsp;Songwei Che,&nbsp;Sanjay K. Behura,&nbsp;Naveen K. Dandu,&nbsp;Anika Shinde,&nbsp;Anh T. Ngo and Vikas Berry*,&nbsp;","doi":"10.1021/acsanm.4c0548010.1021/acsanm.4c05480","DOIUrl":null,"url":null,"abstract":"<p >Hexagonal boron nitride (h-BN), renowned for its formidable attributes─tensile strength (∼100 GPa), wide bandgap (∼6 eV), high thermal conductivity (227–280 W m<sup>–1</sup> K<sup>–1</sup>), and chemical stability─poses a challenge in functionalization due to its electronegativity variance between boron and nitrogen. In a breakthrough, we present unprecedented organometallic functionalization via chromium carbonyl vapor exposure. This approach forms a pristine η<sup>6</sup> bond that preserves lattice planarity and interconnectivity between B- and <i>N</i>-centers, with the metal engaging each h-BN ring. Computational analysis validates spontaneous surface reaction (Δ<i>G</i> = −35.50 kcal/mol). Further, carbonyl groups seed silver nanoparticle growth, culminating in a conductive layer atop h-BN. This nondestructive, chemically versatile functionalization introduces a significant advancement in a multifunctional nanoscale interface, leveraging h-BN’s thermal and structural properties for 2D FET electronic devices and sensing applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 1","pages":"233–243 233–243"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05480","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hexagonal boron nitride (h-BN), renowned for its formidable attributes─tensile strength (∼100 GPa), wide bandgap (∼6 eV), high thermal conductivity (227–280 W m–1 K–1), and chemical stability─poses a challenge in functionalization due to its electronegativity variance between boron and nitrogen. In a breakthrough, we present unprecedented organometallic functionalization via chromium carbonyl vapor exposure. This approach forms a pristine η6 bond that preserves lattice planarity and interconnectivity between B- and N-centers, with the metal engaging each h-BN ring. Computational analysis validates spontaneous surface reaction (ΔG = −35.50 kcal/mol). Further, carbonyl groups seed silver nanoparticle growth, culminating in a conductive layer atop h-BN. This nondestructive, chemically versatile functionalization introduces a significant advancement in a multifunctional nanoscale interface, leveraging h-BN’s thermal and structural properties for 2D FET electronic devices and sensing applications.

Abstract Image

六方氮化硼的有机金属功能化:多功能分子和纳米界面在电子应用中的意义
六方氮化硼(h-BN)以其强大的特性而闻名──抗拉强度(~ 100 GPa)、宽带隙(~ 6 eV)、高导热性(227-280 W m-1 K-1)和化学稳定性──由于其在硼和氮之间的电负性差异,对功能化提出了挑战。在一个突破,我们提出了前所未有的有机金属功能化通过铬羰基蒸汽暴露。这种方法形成了一个原始的η - 6键,保持了晶格的平面性和B-和n -中心之间的互连性,金属与每个h-BN环接合。计算分析证实了自发表面反应(ΔG =−35.50 kcal/mol)。此外,羰基为银纳米颗粒的生长提供了种子,最终在h-BN上形成导电层。这种非破坏性的化学多功能功能化引入了多功能纳米级界面的重大进步,利用h-BN的热学和结构特性用于2D FET电子器件和传感应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信