Sahand Serajian, Syed Ibrahim Gnani Peer Mohamed, Mahmoud M. Shaban, Jacob Voigt, Micah Quirie, Martha Morton, Siamak Nejati and Mona Bavarian*,
{"title":"Flexible Solid Electrolytes from Two-Dimensional Metal Carbide, Polymer, and Ionic Covalent Organic Frameworks","authors":"Sahand Serajian, Syed Ibrahim Gnani Peer Mohamed, Mahmoud M. Shaban, Jacob Voigt, Micah Quirie, Martha Morton, Siamak Nejati and Mona Bavarian*, ","doi":"10.1021/acsaenm.4c0054410.1021/acsaenm.4c00544","DOIUrl":null,"url":null,"abstract":"<p >As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid-state electrolyte by integrating two-dimensional (2D) MXenes with cationic covalent organic frameworks (cCOFs). These frameworks are based on ethidium bromide (EB-cCOF) and porphyrin (POR-cCOF), and are incorporated into the poly(ethylene oxide) (PEO)-based solid electrolytes. The synthesized MXenes and cCOFs serve as multifunctional additives, reducing the PEO crystallinity and enhancing segmental motion. We observed a synergistic effect when COFs and MXene were used in preparing electrolytes, highlighted in the observed increase in the ionic conductivity at room temperature. Additionally, the electrolyte exhibits improved thermal stability up to ≈380 °C and retains ≈9% more residual mass at 1000 °C. These results highlight the potential of hybrid solid electrolytes as promising candidates for advancing high-performance solid-state batteries.</p>","PeriodicalId":55639,"journal":{"name":"ACS Applied Engineering Materials","volume":"3 1","pages":"64–74 64–74"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaenm.4c00544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As the demand for mobile electronic devices continues to grow, the development of all-solid-state lithium metal batteries has emerged as a promising solution to reduce the safety risks associated with conventional lithium-ion batteries. Herein, we introduce an approach to preparing a composite solid-state electrolyte by integrating two-dimensional (2D) MXenes with cationic covalent organic frameworks (cCOFs). These frameworks are based on ethidium bromide (EB-cCOF) and porphyrin (POR-cCOF), and are incorporated into the poly(ethylene oxide) (PEO)-based solid electrolytes. The synthesized MXenes and cCOFs serve as multifunctional additives, reducing the PEO crystallinity and enhancing segmental motion. We observed a synergistic effect when COFs and MXene were used in preparing electrolytes, highlighted in the observed increase in the ionic conductivity at room temperature. Additionally, the electrolyte exhibits improved thermal stability up to ≈380 °C and retains ≈9% more residual mass at 1000 °C. These results highlight the potential of hybrid solid electrolytes as promising candidates for advancing high-performance solid-state batteries.
期刊介绍:
ACS Applied Engineering Materials is an international and interdisciplinary forum devoted to original research covering all aspects of engineered materials complementing the ACS Applied Materials portfolio. Papers that describe theory simulation modeling or machine learning assisted design of materials and that provide new insights into engineering applications are welcomed. The journal also considers experimental research that includes novel methods of preparing characterizing and evaluating new materials designed for timely applications. With its focus on innovative applications ACS Applied Engineering Materials also complements and expands the scope of existing ACS publications that focus on materials science discovery including Biomacromolecules Chemistry of Materials Crystal Growth & Design Industrial & Engineering Chemistry Research Inorganic Chemistry Langmuir and Macromolecules.The scope of ACS Applied Engineering Materials includes high quality research of an applied nature that integrates knowledge in materials science engineering physics mechanics and chemistry.