Xia Zhang, Markus Osenberg, Ralf F. Ziesche, Zhenjiang Yu*, Julia Kowal, Kang Dong*, Yan Lu and Ingo Manke*,
{"title":"Visualizing the Future: Recent Progress and Challenges on Advanced Imaging Characterization for All-Solid-State Batteries","authors":"Xia Zhang, Markus Osenberg, Ralf F. Ziesche, Zhenjiang Yu*, Julia Kowal, Kang Dong*, Yan Lu and Ingo Manke*, ","doi":"10.1021/acsenergylett.4c0247610.1021/acsenergylett.4c02476","DOIUrl":null,"url":null,"abstract":"<p >All-solid-state batteries (ASSBs) offer high safety and energy density, but their degradation and failure mechanisms remain poorly understood due to the buried interfaces within solid-state electrodes and electrolytes. Local probing methods are crucial for addressing key challenges such as interfacial instabilities, dendrite growth, and chemo-mechanical degradation. State-of-the-art imaging techniques provide critical insights into morphological, structural, and compositional evolution of the ubiquitous interfaces in ASSBs. This review highlights recent progress in cutting-edge visualization techniques, including neutron imaging, X-ray tomography, focused ion beam scanning electron microscopy, and cryogenic electron microscopy, which reveal microstructural and chemical changes in ASSBs at scales from the atomic to the macroscopic level. We particularly focus on the elusive failure behaviors at lithium anodes, composite cathodes, solid-state electrolytes, and beyond. Additionally, we discuss the strengths and limitations of each technique, aiming to enhance the understanding of ASSB operation and degradation mechanisms to advance the development of high-energy-density, high-safety ASSBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 1","pages":"496–525 496–525"},"PeriodicalIF":18.2000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c02476","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02476","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state batteries (ASSBs) offer high safety and energy density, but their degradation and failure mechanisms remain poorly understood due to the buried interfaces within solid-state electrodes and electrolytes. Local probing methods are crucial for addressing key challenges such as interfacial instabilities, dendrite growth, and chemo-mechanical degradation. State-of-the-art imaging techniques provide critical insights into morphological, structural, and compositional evolution of the ubiquitous interfaces in ASSBs. This review highlights recent progress in cutting-edge visualization techniques, including neutron imaging, X-ray tomography, focused ion beam scanning electron microscopy, and cryogenic electron microscopy, which reveal microstructural and chemical changes in ASSBs at scales from the atomic to the macroscopic level. We particularly focus on the elusive failure behaviors at lithium anodes, composite cathodes, solid-state electrolytes, and beyond. Additionally, we discuss the strengths and limitations of each technique, aiming to enhance the understanding of ASSB operation and degradation mechanisms to advance the development of high-energy-density, high-safety ASSBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.