Yihong Yu, Zhengpeng Qin, Xuefeng Zhang, Yanan Chen, Gaowu Qin and Song Li*,
{"title":"Far-From-Equilibrium Processing Opens Kinetic Paths for Engineering Novel Materials by Breaking Thermodynamic Limits","authors":"Yihong Yu, Zhengpeng Qin, Xuefeng Zhang, Yanan Chen, Gaowu Qin and Song Li*, ","doi":"10.1021/acsmaterialslett.4c0195210.1021/acsmaterialslett.4c01952","DOIUrl":null,"url":null,"abstract":"<p >Thermodynamic metastable nanomaterials display attractive properties due to their unique atom configuration and microstructure, distinct from their counterparts found in equilibrium phase diagrams. However, their fabrication remains a grand challenge because conventional methods are generally operated under near-equilibrium conditions. To break the thermodynamic limits for discovering novel materials, numerous fabrication methods by adopting extreme strategies have been developed, including ultrafast synthesis, Joule heating, carbon thermal shock, pulse heating, extreme temperature gradients, and rapid solidification. A common feature of these methods is that the target material is processed under a far-from-equilibrium (FFE) thermodynamic state, where a new kinetic route is created for the evolution of an unprecedented composition/structure. In this review, we provide a unifying view and guiding strategies for engineering FFE environments during materials synthesis, categorized within both temporal and spatial dimensions of the thermodynamic landscape. Furthermore, we highlight the potential of FFE materials, not only as platforms for deeper understanding nonequilibrium behaviors, but also as a framework for designing innovative materials for advanced technologies.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 1","pages":"319–332 319–332"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01952","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermodynamic metastable nanomaterials display attractive properties due to their unique atom configuration and microstructure, distinct from their counterparts found in equilibrium phase diagrams. However, their fabrication remains a grand challenge because conventional methods are generally operated under near-equilibrium conditions. To break the thermodynamic limits for discovering novel materials, numerous fabrication methods by adopting extreme strategies have been developed, including ultrafast synthesis, Joule heating, carbon thermal shock, pulse heating, extreme temperature gradients, and rapid solidification. A common feature of these methods is that the target material is processed under a far-from-equilibrium (FFE) thermodynamic state, where a new kinetic route is created for the evolution of an unprecedented composition/structure. In this review, we provide a unifying view and guiding strategies for engineering FFE environments during materials synthesis, categorized within both temporal and spatial dimensions of the thermodynamic landscape. Furthermore, we highlight the potential of FFE materials, not only as platforms for deeper understanding nonequilibrium behaviors, but also as a framework for designing innovative materials for advanced technologies.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.