Optimization of Protoplast Isolation and Transient Expression Systems for Lettuce (Lactuca sativa L.)

IF 2.3 Q1 AGRICULTURE, MULTIDISCIPLINARY
Lei Xiang, Rui-Xin Li, Qing-Jun Zheng, Zan-Tang Huang, Peng-Fei Yu, Zhuo-Xing Shi, Yan-Wen Li, Hai-Ming Zhao, Quan-Ying Cai, Xue-Wen Hou*, Ce-Hui Mo* and Qing X. Li, 
{"title":"Optimization of Protoplast Isolation and Transient Expression Systems for Lettuce (Lactuca sativa L.)","authors":"Lei Xiang,&nbsp;Rui-Xin Li,&nbsp;Qing-Jun Zheng,&nbsp;Zan-Tang Huang,&nbsp;Peng-Fei Yu,&nbsp;Zhuo-Xing Shi,&nbsp;Yan-Wen Li,&nbsp;Hai-Ming Zhao,&nbsp;Quan-Ying Cai,&nbsp;Xue-Wen Hou*,&nbsp;Ce-Hui Mo* and Qing X. Li,&nbsp;","doi":"10.1021/acsagscitech.4c0027310.1021/acsagscitech.4c00273","DOIUrl":null,"url":null,"abstract":"<p >Plant protoplasts are very useful in plant biotechnology, molecular biology, and cell biology. However, an efficient method for protoplast production remains a challenge for many economically important dicotyledonous vegetables, including lettuce (<i>Lactuca sativa</i> L.). Herein, a protocol was optimized for efficient protoplast production from various tissues (leaf and shoot apex) of different lettuce subtypes (romaine, loose-leaf, and semiheading lettuces) by optimizing the major factors affecting protoplast yielding. The optimized protocol yields protoplasts up to 2.0 × 10<sup>7</sup>/g (fresh weight, FW) with viability more than 85%, which is 3–10 times higher than those previously reported. This optimized protocol was also found to be applicable to other dicotyledonous plants (bok choy (<i>Brassica parachinensis</i>), celery cabbage (<i>Brassica pekinensis</i>), and <i>Arabidopsis thaliana</i>) for efficient protoplast production from leaves and shoot apexes. Moreover, an optimized poly(ethylene glycol)-mediated transient expression system (TES), using lettuce shoot apex protoplasts generated via the aforementioned protocol, exhibited high transfection efficiency exceeding 80%. This was further evidenced by the elevated expression levels and subcellular localization of four representative plasma membrane transporters: AAP2, ABCG22, ALMT10, and OATP. In conclusion, the optimized protoplast production protocol along with TES developed in this study will be useful tools for the functional analyses of genes in lettuce and other important dicotyledonous vegetables.</p>","PeriodicalId":93846,"journal":{"name":"ACS agricultural science & technology","volume":"5 1","pages":"36–48 36–48"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS agricultural science & technology","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsagscitech.4c00273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant protoplasts are very useful in plant biotechnology, molecular biology, and cell biology. However, an efficient method for protoplast production remains a challenge for many economically important dicotyledonous vegetables, including lettuce (Lactuca sativa L.). Herein, a protocol was optimized for efficient protoplast production from various tissues (leaf and shoot apex) of different lettuce subtypes (romaine, loose-leaf, and semiheading lettuces) by optimizing the major factors affecting protoplast yielding. The optimized protocol yields protoplasts up to 2.0 × 107/g (fresh weight, FW) with viability more than 85%, which is 3–10 times higher than those previously reported. This optimized protocol was also found to be applicable to other dicotyledonous plants (bok choy (Brassica parachinensis), celery cabbage (Brassica pekinensis), and Arabidopsis thaliana) for efficient protoplast production from leaves and shoot apexes. Moreover, an optimized poly(ethylene glycol)-mediated transient expression system (TES), using lettuce shoot apex protoplasts generated via the aforementioned protocol, exhibited high transfection efficiency exceeding 80%. This was further evidenced by the elevated expression levels and subcellular localization of four representative plasma membrane transporters: AAP2, ABCG22, ALMT10, and OATP. In conclusion, the optimized protoplast production protocol along with TES developed in this study will be useful tools for the functional analyses of genes in lettuce and other important dicotyledonous vegetables.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信