Aircraft Measurements from a U.S. Western Wildfire Demonstrating Day and Night Differences in the Chemical Composition and Optical Properties of Biomass Burning Aerosols and Their Atmospheric Evolution

IF 2.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Felipe A. Rivera-Adorno, Lisa Azzarello, Michael A. Robinson, Zachary C. J. Decker, Rebecca A. Washenfelder, Katherine Hayden, Alessandro Franchin, Christopher D. Holmes, Cora J. Young, Carley D. Fredrickson, Brett Palm, Chris Schmidt, Amber Soja, Emily Gargulinski, Steven S. Brown, Ann M. Middlebrook and Alexander Laskin*, 
{"title":"Aircraft Measurements from a U.S. Western Wildfire Demonstrating Day and Night Differences in the Chemical Composition and Optical Properties of Biomass Burning Aerosols and Their Atmospheric Evolution","authors":"Felipe A. Rivera-Adorno,&nbsp;Lisa Azzarello,&nbsp;Michael A. Robinson,&nbsp;Zachary C. J. Decker,&nbsp;Rebecca A. Washenfelder,&nbsp;Katherine Hayden,&nbsp;Alessandro Franchin,&nbsp;Christopher D. Holmes,&nbsp;Cora J. Young,&nbsp;Carley D. Fredrickson,&nbsp;Brett Palm,&nbsp;Chris Schmidt,&nbsp;Amber Soja,&nbsp;Emily Gargulinski,&nbsp;Steven S. Brown,&nbsp;Ann M. Middlebrook and Alexander Laskin*,&nbsp;","doi":"10.1021/acsearthspacechem.4c0021510.1021/acsearthspacechem.4c00215","DOIUrl":null,"url":null,"abstract":"<p >The composition and transformations of biomass burning aerosols (BBA) have been measured onboard the NOAA Twin Otter research aircraft during the Fire Influence on Regional to Global Environments and Air Quality field study. We analyze real-time aerosol mass spectrometry measurements across three flights during the afternoon, late afternoon, and night of August 28, 2019, for one midsized wildfire. Analysis of several metrics showed that the aerosol composition and optical properties varied depending on the burning conditions at the fire zone and the time of day the BBA was emitted, with substantial variations in the available sunlight. The total aerosol mass loadings were dominated by organic components with a much smaller contribution from inorganic species. A gradual buildup of organic material was observed during the afternoon as the plume aged, indicating the condensation of photochemically formed low-volatility oxidized organic compounds. Highly hygroscopic ammonium nitrate was the main inorganic component, suggesting potential water content in BBA particles and the likelihood of their aqueous-phase reactivity. Depletions of particle-phase NO<sub>3</sub><sup>–</sup> and Cl<sup>–</sup> relative to carbon monoxide were observed in the late afternoon and nighttime plumes, respectively, aligning with known gas-particle partitioning thermodynamics and the heterogeneous chemistry of dissolved nitrate and chloride. The wavelength-dependent light absorption by aerosol species was higher for the plume sampled at night and showed no significant changes with plume age, despite observed trends in composition and mass downwind. These differences in particle composition and optical properties demonstrate that the processes involved in BBA aging are not uniform for the same wildfire over the course of the day and depend highly on when the BBA was emitted, as well as the burning phase at the emissions source.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"9 1","pages":"64–75 64–75"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsearthspacechem.4c00215","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The composition and transformations of biomass burning aerosols (BBA) have been measured onboard the NOAA Twin Otter research aircraft during the Fire Influence on Regional to Global Environments and Air Quality field study. We analyze real-time aerosol mass spectrometry measurements across three flights during the afternoon, late afternoon, and night of August 28, 2019, for one midsized wildfire. Analysis of several metrics showed that the aerosol composition and optical properties varied depending on the burning conditions at the fire zone and the time of day the BBA was emitted, with substantial variations in the available sunlight. The total aerosol mass loadings were dominated by organic components with a much smaller contribution from inorganic species. A gradual buildup of organic material was observed during the afternoon as the plume aged, indicating the condensation of photochemically formed low-volatility oxidized organic compounds. Highly hygroscopic ammonium nitrate was the main inorganic component, suggesting potential water content in BBA particles and the likelihood of their aqueous-phase reactivity. Depletions of particle-phase NO3 and Cl relative to carbon monoxide were observed in the late afternoon and nighttime plumes, respectively, aligning with known gas-particle partitioning thermodynamics and the heterogeneous chemistry of dissolved nitrate and chloride. The wavelength-dependent light absorption by aerosol species was higher for the plume sampled at night and showed no significant changes with plume age, despite observed trends in composition and mass downwind. These differences in particle composition and optical properties demonstrate that the processes involved in BBA aging are not uniform for the same wildfire over the course of the day and depend highly on when the BBA was emitted, as well as the burning phase at the emissions source.

Abstract Image

来自美国西部野火的飞机测量显示生物质燃烧气溶胶的化学成分和光学性质的昼夜差异及其大气演变
在美国国家海洋和大气管理局“双水獭”研究飞机上,对火灾对区域到全球环境和空气质量的影响进行了野外研究,测量了生物质燃烧气溶胶(BBA)的组成和转化。我们分析了2019年8月28日下午、下午晚些时候和晚上三次飞行的实时气溶胶质谱测量结果,用于一场中型野火。对几个指标的分析表明,气溶胶成分和光学性质随火区的燃烧条件和BBA发射的时间而变化,有效阳光也有很大变化。气溶胶总质量负荷以有机组分为主,无机组分的贡献小得多。在下午,随着羽流老化,观察到有机物质逐渐堆积,表明光化学凝结形成了低挥发性氧化有机化合物。高吸湿性的硝酸铵是主要的无机成分,这表明BBA颗粒中潜在的水分含量及其水相反应性的可能性。颗粒相NO3 -和Cl -相对于一氧化碳的消耗分别在下午晚些时候和夜间的羽流中被观察到,这与已知的气-颗粒分配热力学和溶解的硝酸盐和氯化物的非均相化学一致。尽管观测到羽流组成和下风质量的变化趋势,但在夜间采样的羽流中,气溶胶种类的波长依赖性光吸收较高,且随羽流年龄的变化不显著。这些颗粒组成和光学性质的差异表明,在一天中的同一野火中,涉及BBA老化的过程并不均匀,并且高度依赖于BBA何时发射,以及在发射源处的燃烧阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Earth and Space Chemistry
ACS Earth and Space Chemistry Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
5.30
自引率
11.80%
发文量
249
期刊介绍: The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信