More Frequent Runoff and Connected Sources in Headwaters Promote Browning of Northern Freshwaters

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Stefano Basso*, Andreas Musolff and Heleen A. de Wit, 
{"title":"More Frequent Runoff and Connected Sources in Headwaters Promote Browning of Northern Freshwaters","authors":"Stefano Basso*,&nbsp;Andreas Musolff and Heleen A. de Wit,&nbsp;","doi":"10.1021/acs.estlett.4c0093910.1021/acs.estlett.4c00939","DOIUrl":null,"url":null,"abstract":"<p >Sustained browning of northern waters has prompted inquiries into the drivers of increasing concentrations of organic matter. While reduced sulfur deposition is a key cause, an increasing role of hydrologic mechanisms as a result of cleaner air and progressing climate change has been repeatedly suggested. How these controls act remains however unclear. Here we examine over 30 years of organic carbon concentration and discharge data from four reference streams located across Norway to pinpoint consistent hydrologic changes that may promote water browning. Stable slopes with changing intercepts of the concentration-discharge relations indicate that the influence of air pollution on soil solution chemistry is plausible, supporting available chemical explanations from a hydrologic perspective. Decreasing ratios of concentration to discharge variability, observed in autumn over the years, point to less spatial heterogeneity of the sources of organic carbon. A clear rise in the frequency of runoff events, which increases the opportunities for dissolved organic carbon to transit from soil to streams, also indicates higher hydrologic connectivity and more even mobilization of carbon sources. More connected sources and more frequent runoff events, which jointly enhance the likelihood of organic carbon reaching rivers, may thus contribute to the observed browning of northern waters.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 1","pages":"51–56 51–56"},"PeriodicalIF":8.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00939","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00939","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sustained browning of northern waters has prompted inquiries into the drivers of increasing concentrations of organic matter. While reduced sulfur deposition is a key cause, an increasing role of hydrologic mechanisms as a result of cleaner air and progressing climate change has been repeatedly suggested. How these controls act remains however unclear. Here we examine over 30 years of organic carbon concentration and discharge data from four reference streams located across Norway to pinpoint consistent hydrologic changes that may promote water browning. Stable slopes with changing intercepts of the concentration-discharge relations indicate that the influence of air pollution on soil solution chemistry is plausible, supporting available chemical explanations from a hydrologic perspective. Decreasing ratios of concentration to discharge variability, observed in autumn over the years, point to less spatial heterogeneity of the sources of organic carbon. A clear rise in the frequency of runoff events, which increases the opportunities for dissolved organic carbon to transit from soil to streams, also indicates higher hydrologic connectivity and more even mobilization of carbon sources. More connected sources and more frequent runoff events, which jointly enhance the likelihood of organic carbon reaching rivers, may thus contribute to the observed browning of northern waters.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信