{"title":"Self-Cross-Linked Collagen Sponge from the Alosa sapidissima Scale for Hemostasis and Wound Healing Applications","authors":"Xiaoyun Li, Yue Xu, Zijun Zhou, Mingliang Tang, Jinjia Cui, Wenjing Han, Jingyi Li, Jing Dai, Xiaoyi Ren, Huihui Jiang, Yanzhen Yu*, Qinghua Liu*, Hongmei Tang* and Miao Xiao*, ","doi":"10.1021/acs.biomac.4c0121110.1021/acs.biomac.4c01211","DOIUrl":null,"url":null,"abstract":"<p >Type I collagen, a crucial component maintaining the structural integrity and physiological function of various tissues, is widely regarded as one of the most suitable biomaterials for healthcare applications. In this study, shad scales, used for treating ulcers, scalds, and burns in traditional Chinese medicine, were exploited for type I collagen extraction. After self-assembly into hydrogels, the extracted collagen was subsequently freeze-dried to form collagen sponges. The collagen sponge promoted rapid hemostasis, neovascularization, and immune regulation. Additionally, it accelerated the formation of granulation tissue, re-epithelialization, and collagen remodeling at the wound site in full-thickness skin wound rat models. Consequently, the shad scale collagen sponge holds great promise for the treatment of chronic wounds and skin regeneration. Notably, the shad was sourced from sustainably recirculating aquaculture systems (RAS) farms that adhere to the Traceable Management of Animal Products Safety, ensuring that the derived collagen possesses potential in the medical apparatus market.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 1","pages":"405–414 405–414"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biomac.4c01211","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type I collagen, a crucial component maintaining the structural integrity and physiological function of various tissues, is widely regarded as one of the most suitable biomaterials for healthcare applications. In this study, shad scales, used for treating ulcers, scalds, and burns in traditional Chinese medicine, were exploited for type I collagen extraction. After self-assembly into hydrogels, the extracted collagen was subsequently freeze-dried to form collagen sponges. The collagen sponge promoted rapid hemostasis, neovascularization, and immune regulation. Additionally, it accelerated the formation of granulation tissue, re-epithelialization, and collagen remodeling at the wound site in full-thickness skin wound rat models. Consequently, the shad scale collagen sponge holds great promise for the treatment of chronic wounds and skin regeneration. Notably, the shad was sourced from sustainably recirculating aquaculture systems (RAS) farms that adhere to the Traceable Management of Animal Products Safety, ensuring that the derived collagen possesses potential in the medical apparatus market.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.