Hanbo Zhang, Tingting Si, Lan Yuan*, Chuang Han* and Yi-Jun Xu*,
{"title":"Surfactant-Assisted Assembly of Hierarchical CdS-Ti3C2Tx MXene toward Enhanced Cooperative Photoredox Catalysis","authors":"Hanbo Zhang, Tingting Si, Lan Yuan*, Chuang Han* and Yi-Jun Xu*, ","doi":"10.1021/acsmaterialslett.4c0206010.1021/acsmaterialslett.4c02060","DOIUrl":null,"url":null,"abstract":"<p >The scarcity of strategies to finely modulate the interface assembly between MXene and semiconductors often restricts their full potential for photocatalysis. Herein, resorting to the cetyltrimethylammonium bromide (CTAB) surfactant intercalation effect, we report the rational synthesis of hierarchical seaurchin-like CdS-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene-CTAB (CdS-T-C) ensembles to modulate the interface and structure of MXene-semiconductor heterojunctions for significantly boosted photoredox coupling catalysis. The ternary CdS-T-C exhibits markedly enhanced activity toward visible light photoreforming of benzyl alcohol (BA) to benzaldehyde (BAD) and H<sub>2</sub> cooperatively, as compared to bare CdS and conventional CdS-Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene (CdS-T) that suffer from serious MXene restacking with obvious electronic and optical property attenuation. Mechanistic studies reveal that the CTAB interfacial intercalation alleviates the restacking of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, thus weakening the light shielding effect while promoting the charge transport and surface activity of MXene. This work demonstrates an appealing strategy to regulate the interfacial cross-coupling configuration of MXene-semiconductor composites for efficient solar-to-chemical conversion.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 1","pages":"257–264 257–264"},"PeriodicalIF":9.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The scarcity of strategies to finely modulate the interface assembly between MXene and semiconductors often restricts their full potential for photocatalysis. Herein, resorting to the cetyltrimethylammonium bromide (CTAB) surfactant intercalation effect, we report the rational synthesis of hierarchical seaurchin-like CdS-Ti3C2Tx MXene-CTAB (CdS-T-C) ensembles to modulate the interface and structure of MXene-semiconductor heterojunctions for significantly boosted photoredox coupling catalysis. The ternary CdS-T-C exhibits markedly enhanced activity toward visible light photoreforming of benzyl alcohol (BA) to benzaldehyde (BAD) and H2 cooperatively, as compared to bare CdS and conventional CdS-Ti3C2Tx MXene (CdS-T) that suffer from serious MXene restacking with obvious electronic and optical property attenuation. Mechanistic studies reveal that the CTAB interfacial intercalation alleviates the restacking of Ti3C2Tx, thus weakening the light shielding effect while promoting the charge transport and surface activity of MXene. This work demonstrates an appealing strategy to regulate the interfacial cross-coupling configuration of MXene-semiconductor composites for efficient solar-to-chemical conversion.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.