Ling Zhu, Wenqiang Wang, Yao Qin, Yulin Liu, Yingying Zhang, Jun Li, Yudan Zhu* and Xiaohua Lu,
{"title":"Adsorption Behavior of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Activated Carbon by Grand Canonical Monte Carlo: Effect of Pore Size and Distribution","authors":"Ling Zhu, Wenqiang Wang, Yao Qin, Yulin Liu, Yingying Zhang, Jun Li, Yudan Zhu* and Xiaohua Lu, ","doi":"10.1021/acs.jced.4c0030110.1021/acs.jced.4c00301","DOIUrl":null,"url":null,"abstract":"<p >Activated carbon with abundant nanoporous structures can effectively adsorb 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin (TCDD) molecules. However, an atomistic understanding of its underlying adsorption mechanism is still urgently needed because TCDD, given its strong toxicity, requires strict testing conditions in experiments. In this work, a series of grand canonical Monte Carlo (GCMC) simulations were performed to evaluate the effects of the slit width and pore size distribution (PSD) of activated carbons on TCDD adsorption. The microstructural analyses of TCDD within nanoslits demonstrate that when the slit width exceeds 0.8 nm, the orientation of TCDD molecules inclines about 30° along the axis’s normal direction, causing the adsorption amount to increase rapidly. When the slit width exceeds 2.0 nm, its disordered orientation causes the adsorption amount to reach a maximum value. Based on this understanding, we determined the effective specific pore volume (or effective specific surface area) for TCDD adsorption. In combination with the full width at half-maximum (FWHM) of the PSD, we propose the experimentally measurable structural parameter <i>V</i><sub><i>H></i>0.8</sub>/FWHM (or <i>S</i><sub><i>H></i>0.8</sub>/FWHM) and use it as an indicator to reflect the TCDD adsorption performance of different activated carbons. A high structural parameter of activated carbon can indicate a high TCDD adsorption amount.</p>","PeriodicalId":42,"journal":{"name":"Journal of Chemical & Engineering Data","volume":"70 1","pages":"647–658 647–658"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical & Engineering Data","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jced.4c00301","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Activated carbon with abundant nanoporous structures can effectively adsorb 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) molecules. However, an atomistic understanding of its underlying adsorption mechanism is still urgently needed because TCDD, given its strong toxicity, requires strict testing conditions in experiments. In this work, a series of grand canonical Monte Carlo (GCMC) simulations were performed to evaluate the effects of the slit width and pore size distribution (PSD) of activated carbons on TCDD adsorption. The microstructural analyses of TCDD within nanoslits demonstrate that when the slit width exceeds 0.8 nm, the orientation of TCDD molecules inclines about 30° along the axis’s normal direction, causing the adsorption amount to increase rapidly. When the slit width exceeds 2.0 nm, its disordered orientation causes the adsorption amount to reach a maximum value. Based on this understanding, we determined the effective specific pore volume (or effective specific surface area) for TCDD adsorption. In combination with the full width at half-maximum (FWHM) of the PSD, we propose the experimentally measurable structural parameter VH>0.8/FWHM (or SH>0.8/FWHM) and use it as an indicator to reflect the TCDD adsorption performance of different activated carbons. A high structural parameter of activated carbon can indicate a high TCDD adsorption amount.
期刊介绍:
The Journal of Chemical & Engineering Data is a monthly journal devoted to the publication of data obtained from both experiment and computation, which are viewed as complementary. It is the only American Chemical Society journal primarily concerned with articles containing data on the phase behavior and the physical, thermodynamic, and transport properties of well-defined materials, including complex mixtures of known compositions. While environmental and biological samples are of interest, their compositions must be known and reproducible. As a result, adsorption on natural product materials does not generally fit within the scope of Journal of Chemical & Engineering Data.