The Last Piece of the Puzzle: Access to 7-Connected Zirconium Metal-Organic Frameworks for Hexane Separation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianhui Tang, Lei Jia, Xiaoliang Wang, Shengyi Su, Yongwei Chen, Xiang-Jing Kong, Zi-Ming Ye, Haomiao Xie, Wei Gong, Enping Du, Yan Liu, Kent O. Kirlikovali, Omar Farha, Yong Cui
{"title":"The Last Piece of the Puzzle: Access to 7-Connected Zirconium Metal-Organic Frameworks for Hexane Separation","authors":"Xianhui Tang, Lei Jia, Xiaoliang Wang, Shengyi Su, Yongwei Chen, Xiang-Jing Kong, Zi-Ming Ye, Haomiao Xie, Wei Gong, Enping Du, Yan Liu, Kent O. Kirlikovali, Omar Farha, Yong Cui","doi":"10.1002/anie.202424859","DOIUrl":null,"url":null,"abstract":"Zirconium metal-organic frameworks (Zr-MOFs) exhibit a wide range of Zr6 cluster connectivities, from 3-connected to 12-connected, enabling diverse structural designs. However, odd-numbered connectivities, especially the 7-connected Zr-MOFs, are exceptionally rare due to geometric symmetry challenges. To address this, we developed a geometric pre-assembly strategy to achieve targeted cluster connectivity. Using this approach, we synthesized NU-5001 {[Zr6O4(OH)4(H4-L)2]}, a Zr-MOF featuring 7-connected Zr6 clusters, derived from the precursor 6-connected Zr-MOF, NU-5000 {[Zr6O4(OH)4(H3-L)2]}. NU-5000, constructed with a tritopic chiral linker H3-L {(R)-4,4',4''-[6'-chloro-2,2'-diethoxy-(1,1'-binaphthalene)-4,4',6-triyl]tribenzoic acid}, forms a (3,6)-connected ant topology. Introducing a tetratopic chiral linker, 1,1'-bi-2-naphthol tetracarboxylic acid H4-L {(R)-4,4',4'',4'''-[2,2'-diethoxy-(1,1'-binaphthalene)-4,4',6,6'-tetrayl]tetrabenzoic acid}, enabled an additional connection, resulting in NU-5001 with a (3,4,7)-connected topology. The H4-L linker acts as either fully 4-connected or 3-connected with one arm uncoordinated. Additionally, NU-5001M {[Zr6O4(OH)4(H4-L) (H3-L)]}, an isostructural variant, was synthesized using a mix of H3-L and H4-L linkers. NU-5001’s unique pore structure and slight flexibility enable distinct adsorption behaviors for hexane isomers, highlighting its potential for kinetic separations. This work completes the Zr6 cluster connectivity landscape and demonstrates the feasibility of tuning Zr-MOF connectivities through rational linker design, paving the way for rare, low-symmetry frameworks with tailored properties.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"11 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424859","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zirconium metal-organic frameworks (Zr-MOFs) exhibit a wide range of Zr6 cluster connectivities, from 3-connected to 12-connected, enabling diverse structural designs. However, odd-numbered connectivities, especially the 7-connected Zr-MOFs, are exceptionally rare due to geometric symmetry challenges. To address this, we developed a geometric pre-assembly strategy to achieve targeted cluster connectivity. Using this approach, we synthesized NU-5001 {[Zr6O4(OH)4(H4-L)2]}, a Zr-MOF featuring 7-connected Zr6 clusters, derived from the precursor 6-connected Zr-MOF, NU-5000 {[Zr6O4(OH)4(H3-L)2]}. NU-5000, constructed with a tritopic chiral linker H3-L {(R)-4,4',4''-[6'-chloro-2,2'-diethoxy-(1,1'-binaphthalene)-4,4',6-triyl]tribenzoic acid}, forms a (3,6)-connected ant topology. Introducing a tetratopic chiral linker, 1,1'-bi-2-naphthol tetracarboxylic acid H4-L {(R)-4,4',4'',4'''-[2,2'-diethoxy-(1,1'-binaphthalene)-4,4',6,6'-tetrayl]tetrabenzoic acid}, enabled an additional connection, resulting in NU-5001 with a (3,4,7)-connected topology. The H4-L linker acts as either fully 4-connected or 3-connected with one arm uncoordinated. Additionally, NU-5001M {[Zr6O4(OH)4(H4-L) (H3-L)]}, an isostructural variant, was synthesized using a mix of H3-L and H4-L linkers. NU-5001’s unique pore structure and slight flexibility enable distinct adsorption behaviors for hexane isomers, highlighting its potential for kinetic separations. This work completes the Zr6 cluster connectivity landscape and demonstrates the feasibility of tuning Zr-MOF connectivities through rational linker design, paving the way for rare, low-symmetry frameworks with tailored properties.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信