An alternative splicing caused by a natural variation in BnaC02.VTE4 gene affects vitamin E and glucosinolate content in rapeseed (Brassica napus L.)

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Furong Wang, Lieqiong Kuang, Zelin Xiao, Ze Tian, Xinfa Wang, Hanzhong Wang, Xiaoling Dun
{"title":"An alternative splicing caused by a natural variation in BnaC02.VTE4 gene affects vitamin E and glucosinolate content in rapeseed (Brassica napus L.)","authors":"Furong Wang, Lieqiong Kuang, Zelin Xiao, Ze Tian, Xinfa Wang, Hanzhong Wang, Xiaoling Dun","doi":"10.1111/pbi.14603","DOIUrl":null,"url":null,"abstract":"Vitamin E (VE) is essential for plants and animals. Rapeseed oil is rich in α-tocopherol (α-T), which is the most bioactive form of VE in human body. This study demonstrated that VE in rapeseed seeds was mainly controlled by embryo genotype through incomplete diallel hybridization. By genome-wide association study, the QTL-qVE.C02 associated with VE and α-T contents was detected in a <i>Brassica napus</i> association population, and the phenotypic contribution rate was up to 18.71%. <i>BnaC02.VTE4</i>, encoding gama-tocopherol methyltransferase, was proved as the target gene of qVE.C02 by genetic complementation. Two <i>BnaC02.VTE4</i> haplotypes were identified in the population. Compared with <i>BnaC02.VTE4</i><sup>HapH</sup>, a point mutation from A to G at the 3′ splicing site of the second intron were found in <i>BnaC02.VTE4</i><sup>HapL</sup>, resulting in alternative splicing and early termination of translation. HapL<sup>1052(G-A)</sup>, the site-directed mutagenesis fragment of <i>BnaC02.VTE4</i><sup>HapL</sup>, was introduced into <i>Arabidopsis vte4</i> mutant and 8S088 (a <i>BnaC02.VTE4</i><sup>HapL</sup> accession), and the contents of VE and α-T in <i>atvte4-4</i> and 8S088 seeds were increased by 90.10% to 307.29%. These demonstrated the point mutation as the causal for the difference in VE biosynthesis in rapeseed. Further, this variation also led to the significant difference in glucosinolate content between <i>BnaC02.VTE4</i><sup>HapH</sup> and <i>BnaC02.VTE4</i><sup>HapL</sup> accessions. Multi-omics analysis suggested that the expression of some genes and the accumulation of several metabolites related to the glucosinolate biosynthesis pathway were significantly increased in <i>BnaC02.VTE4</i><sup>HapL</sup> group. Moreover, by functional marker identification, the <i>BnaC02.VTE4</i><sup>HapH</sup> was found to be selected during domestication. Our findings offered promising opportunities for enhancing rapeseed quality traits.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"63 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14603","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Vitamin E (VE) is essential for plants and animals. Rapeseed oil is rich in α-tocopherol (α-T), which is the most bioactive form of VE in human body. This study demonstrated that VE in rapeseed seeds was mainly controlled by embryo genotype through incomplete diallel hybridization. By genome-wide association study, the QTL-qVE.C02 associated with VE and α-T contents was detected in a Brassica napus association population, and the phenotypic contribution rate was up to 18.71%. BnaC02.VTE4, encoding gama-tocopherol methyltransferase, was proved as the target gene of qVE.C02 by genetic complementation. Two BnaC02.VTE4 haplotypes were identified in the population. Compared with BnaC02.VTE4HapH, a point mutation from A to G at the 3′ splicing site of the second intron were found in BnaC02.VTE4HapL, resulting in alternative splicing and early termination of translation. HapL1052(G-A), the site-directed mutagenesis fragment of BnaC02.VTE4HapL, was introduced into Arabidopsis vte4 mutant and 8S088 (a BnaC02.VTE4HapL accession), and the contents of VE and α-T in atvte4-4 and 8S088 seeds were increased by 90.10% to 307.29%. These demonstrated the point mutation as the causal for the difference in VE biosynthesis in rapeseed. Further, this variation also led to the significant difference in glucosinolate content between BnaC02.VTE4HapH and BnaC02.VTE4HapL accessions. Multi-omics analysis suggested that the expression of some genes and the accumulation of several metabolites related to the glucosinolate biosynthesis pathway were significantly increased in BnaC02.VTE4HapL group. Moreover, by functional marker identification, the BnaC02.VTE4HapH was found to be selected during domestication. Our findings offered promising opportunities for enhancing rapeseed quality traits.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信