Kathrin Siebold, Elena Chikunova, Nils Lorz, Christina Jordan, Alvar Gossert, Ryan Gilmour
{"title":"Fluoro-Fucosylation Enables the Interrogation of the Lea – LecB Interaction by BioNMR Spectroscopy","authors":"Kathrin Siebold, Elena Chikunova, Nils Lorz, Christina Jordan, Alvar Gossert, Ryan Gilmour","doi":"10.1002/anie.202423782","DOIUrl":null,"url":null,"abstract":"Fucosylation patterns in cell-surface glycans are essential mediators of recognition and signalling. Aberrations in these signatures serve as vital diagnostic markers of disease progression, and so understanding fucose-protein interactions at the molecular level is crucial. Molecular editing of l-fucose (Fuc) at C2 with fluorine provides a platform to reconcile the ubiquity of fucosylation with the paucity of strategies to interrogate site-specific interactions. Through judicious introduction of a pseudo-equatorial fluorine [C(sp3)-F] adjacent to the anomeric position, β-selective fucosylation can be achieved with a range of diverse acceptors (>50:1): the selectivity of this process can be inverted through changes in the donor scaffold. Reaction development was driven by the desire to construct a fluorinated analogue of Lewis antigen a (F-Lea), in which fluorine replaces a key OH group at C2. Lea is a ligand for Lectin B (LecB) in the pathogen Pseudomonas aeruginosa and thus delineating the importance of key interactions in this complex has ramifications for drug discovery. Independent syntheses of Lea and F-Lea, and systematic bioNMR analyses with both glycans has unequivocally established the essential role of O2 of fucose in the Lea-LecB complex.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"61 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423782","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fucosylation patterns in cell-surface glycans are essential mediators of recognition and signalling. Aberrations in these signatures serve as vital diagnostic markers of disease progression, and so understanding fucose-protein interactions at the molecular level is crucial. Molecular editing of l-fucose (Fuc) at C2 with fluorine provides a platform to reconcile the ubiquity of fucosylation with the paucity of strategies to interrogate site-specific interactions. Through judicious introduction of a pseudo-equatorial fluorine [C(sp3)-F] adjacent to the anomeric position, β-selective fucosylation can be achieved with a range of diverse acceptors (>50:1): the selectivity of this process can be inverted through changes in the donor scaffold. Reaction development was driven by the desire to construct a fluorinated analogue of Lewis antigen a (F-Lea), in which fluorine replaces a key OH group at C2. Lea is a ligand for Lectin B (LecB) in the pathogen Pseudomonas aeruginosa and thus delineating the importance of key interactions in this complex has ramifications for drug discovery. Independent syntheses of Lea and F-Lea, and systematic bioNMR analyses with both glycans has unequivocally established the essential role of O2 of fucose in the Lea-LecB complex.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.