Improving the Methane Oxidation by Self-Adaptive Optimization of Liquid-Metal Catalysts

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuen Wu, Haoran Zhang, Yinhe Wang, Xiaokang Liu, Fan Wu, Xiaoqian Wang, Chunrong Ma, Xiao Han, Yihua Ran, Yan Zhang, Zhiwen Zhang, Qiang Xu, Zhandong Wang, Guozhen Zhang, Jing Wang, Jun Cai, Zhi Liu, Yu Zhang, Tao Yao, Jun Jiang
{"title":"Improving the Methane Oxidation by Self-Adaptive Optimization of Liquid-Metal Catalysts","authors":"Yuen Wu, Haoran Zhang, Yinhe Wang, Xiaokang Liu, Fan Wu, Xiaoqian Wang, Chunrong Ma, Xiao Han, Yihua Ran, Yan Zhang, Zhiwen Zhang, Qiang Xu, Zhandong Wang, Guozhen Zhang, Jing Wang, Jun Cai, Zhi Liu, Yu Zhang, Tao Yao, Jun Jiang","doi":"10.1002/anie.202421554","DOIUrl":null,"url":null,"abstract":"Methane, a major greenhouse gas and abundant carbon resource, presents significant challenges in catalysis due to its high symmetry and thermodynamic stability, which tend to cause over-oxidation to CO2. Traditional catalysts require high temperatures and pressures to facilitate CH4 conversion, constrained by their rigid structures which lack the flexibility needed for optimizing complex reaction steps. This study introduces a novel Cu single atoms-embedded liquid metal catalyst (Cu-LMC) based on gallium alloys, characterized by dynamic, self-adaptive structures that provide enhanced catalytic performance and selectivity. Our findings reveal that Cu-LMC achieves a high methane conversion to methanol yield (5.9 mol·gCu-1·h-1) with a selectivity of 82%. The results show that mild surface oxidation significantly boosts the catalytic performance of Cu-LMC by increasing active copper sites through the formation of a Cu-O-Ga configuration while preserving the catalyst's structural flexibility. In-situ XPS and XAFS analyses, along with AIMD simulations, demonstrate that the Cu-LMC enables self-adaptive structural adjustments that lower methanol desorption energy and increase the energy barrier for by-product formation, optimizing the overall methane conversion process. The results underscore the importance of designing catalysts with dynamic and adaptable structures to overcome traditional limitations and improve efficiency in catalytic reactions.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"82 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421554","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Methane, a major greenhouse gas and abundant carbon resource, presents significant challenges in catalysis due to its high symmetry and thermodynamic stability, which tend to cause over-oxidation to CO2. Traditional catalysts require high temperatures and pressures to facilitate CH4 conversion, constrained by their rigid structures which lack the flexibility needed for optimizing complex reaction steps. This study introduces a novel Cu single atoms-embedded liquid metal catalyst (Cu-LMC) based on gallium alloys, characterized by dynamic, self-adaptive structures that provide enhanced catalytic performance and selectivity. Our findings reveal that Cu-LMC achieves a high methane conversion to methanol yield (5.9 mol·gCu-1·h-1) with a selectivity of 82%. The results show that mild surface oxidation significantly boosts the catalytic performance of Cu-LMC by increasing active copper sites through the formation of a Cu-O-Ga configuration while preserving the catalyst's structural flexibility. In-situ XPS and XAFS analyses, along with AIMD simulations, demonstrate that the Cu-LMC enables self-adaptive structural adjustments that lower methanol desorption energy and increase the energy barrier for by-product formation, optimizing the overall methane conversion process. The results underscore the importance of designing catalysts with dynamic and adaptable structures to overcome traditional limitations and improve efficiency in catalytic reactions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信