Photoswitchable Molecular Motor Phospholipid: Synthesis, Characterization, and Integration into Lipid Vesicles

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ainoa Guinart, Daniel Doellerer, Yusuf Qutbuddin, Henry Zivkovic, Cristina Branca, Dominik Hrebik, Petra Schwille, Ben L. Feringa
{"title":"Photoswitchable Molecular Motor Phospholipid: Synthesis, Characterization, and Integration into Lipid Vesicles","authors":"Ainoa Guinart, Daniel Doellerer, Yusuf Qutbuddin, Henry Zivkovic, Cristina Branca, Dominik Hrebik, Petra Schwille, Ben L. Feringa","doi":"10.1021/acs.langmuir.4c04173","DOIUrl":null,"url":null,"abstract":"Lipid membranes are essential for cellular function, acting as barriers and platforms for major cellular and biochemical activities. The integration of photoisomerizable units into lipid structures allows for tunable membrane properties, offering insights into major membrane-related processes. In this study, we present the first molecular-motor-conjugated phospholipid system. The synthesis of two phosphatidylcholine derivatives is reported, where one acyl chain is replaced with a light-responsive molecular rotary motor moiety. We explore the photochemical and thermodynamic behaviors of these compounds in solution and as self-assembled systems, demonstrating their rotation cycles under illumination and their dynamic properties in combination with lipid molecules. Additionally, giant unilamellar vesicles with these compounds are formed to investigate the mechanisms of the photoinduced responses in synthetic lipid membranes. Our findings show that molecular motor-based lipids can operate in aqueous solution and with natural phospholipids, maintaining photoisomerization properties and enabling oxidation-driven release within giant lipid vesicles.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"123 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04173","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid membranes are essential for cellular function, acting as barriers and platforms for major cellular and biochemical activities. The integration of photoisomerizable units into lipid structures allows for tunable membrane properties, offering insights into major membrane-related processes. In this study, we present the first molecular-motor-conjugated phospholipid system. The synthesis of two phosphatidylcholine derivatives is reported, where one acyl chain is replaced with a light-responsive molecular rotary motor moiety. We explore the photochemical and thermodynamic behaviors of these compounds in solution and as self-assembled systems, demonstrating their rotation cycles under illumination and their dynamic properties in combination with lipid molecules. Additionally, giant unilamellar vesicles with these compounds are formed to investigate the mechanisms of the photoinduced responses in synthetic lipid membranes. Our findings show that molecular motor-based lipids can operate in aqueous solution and with natural phospholipids, maintaining photoisomerization properties and enabling oxidation-driven release within giant lipid vesicles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信