Water Transport Dynamics and Kinetic Equilibria in Nanoblisters at the Graphene–Mica Interface

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Joshua S. Roys, Nicholas D. Stucchi, Jennifer M. O’Brien, Adam D. Hill, Ryan D. Brown
{"title":"Water Transport Dynamics and Kinetic Equilibria in Nanoblisters at the Graphene–Mica Interface","authors":"Joshua S. Roys, Nicholas D. Stucchi, Jennifer M. O’Brien, Adam D. Hill, Ryan D. Brown","doi":"10.1021/acs.langmuir.4c03622","DOIUrl":null,"url":null,"abstract":"Nanoscale reduced volumes with novel properties can be produced from 2D materials like graphene. Mild thermal annealing imposes vast and varied amounts of water intercalation into the graphene–mica interface, resulting in the formation of nanoblisters and impacting the local environment for applications such as reactions confined at the solid–solid interface. Atomic force microscopy imaging (AFM) and micro-Fourier transform infrared (micro-FTIR) spectroscopy characterization after 60–120 °C anneals revealed large volumes of water readily intercalate into graphene–mica nanoblisters, elucidating water transport behavior under mild reaction conditions. The inflation and deflation of graphene nanoblisters throughout the annealing process is attributed to the contraction of the graphene capping layer upon cooling from the annealing temperature, due to the independence of nanoblister aspect ratios from nanoblister volume or surface area. The intercalated water volume was estimated by the distended volumes of each nanoblister and exhibit an equilibrium trend established after 2 h of annealing. This water equilibrium occurs at a variety of temperatures, but higher temperatures favor graphene contraction and distention to accommodate larger volumes of water. Nanoblister volumes are set during the cooling process, indicating a kinetic trapping effect that can influence physical properties and reactivity for all systems confined at the graphene–mica interface.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"137 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03622","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale reduced volumes with novel properties can be produced from 2D materials like graphene. Mild thermal annealing imposes vast and varied amounts of water intercalation into the graphene–mica interface, resulting in the formation of nanoblisters and impacting the local environment for applications such as reactions confined at the solid–solid interface. Atomic force microscopy imaging (AFM) and micro-Fourier transform infrared (micro-FTIR) spectroscopy characterization after 60–120 °C anneals revealed large volumes of water readily intercalate into graphene–mica nanoblisters, elucidating water transport behavior under mild reaction conditions. The inflation and deflation of graphene nanoblisters throughout the annealing process is attributed to the contraction of the graphene capping layer upon cooling from the annealing temperature, due to the independence of nanoblister aspect ratios from nanoblister volume or surface area. The intercalated water volume was estimated by the distended volumes of each nanoblister and exhibit an equilibrium trend established after 2 h of annealing. This water equilibrium occurs at a variety of temperatures, but higher temperatures favor graphene contraction and distention to accommodate larger volumes of water. Nanoblister volumes are set during the cooling process, indicating a kinetic trapping effect that can influence physical properties and reactivity for all systems confined at the graphene–mica interface.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信