{"title":"Bioinspired Superwettable Surfaces and Materials for Liquid Motion Control","authors":"Huijie Wei, Lingmei Zhu, Maolin Zhou, Tiance Zhang, Chang Gao, Qiang Luo, Boyang Tian, Jianhua Wang, Yongping Hou, Yongmei Zheng","doi":"10.1021/acsnano.4c15866","DOIUrl":null,"url":null,"abstract":"Directional fluid dynamics has garnered increasing attention because of its extensive applications in diverse fields including water harvesting, anti-icing, and microfluidic manipulation. Natural organisms have evolved a myriad of surfaces with specialized functions that manipulate liquids by virtue of their surface structure and chemical composition. These surfaces provide an extremely rich source of inspiration for controlled fluid transfer. The study of the fundamentals of what happens between droplets and functional surfaces and the close interactions is essential for the development of technologies and solutions in different fields. Exploring the inherent workings of droplet manipulation on natural biosurfaces can inspire the design and development of superwettable materials. This review deepens the understanding of directed fluid dynamics by summarizing interface fluid dynamics theory and mechanisms. It presents the fundamental principles of directed fluid dynamics on typical natural biological surfaces. Additionally, it elucidates the fluid dynamics behavior and applications of a diverse set of smart functional surfaces inspired by natural organisms. Simultaneously, it shares its view on superwetting interface liquid dynamics challenges and opportunities, pushing for next-generation biomimetic superwettable materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"39 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15866","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Directional fluid dynamics has garnered increasing attention because of its extensive applications in diverse fields including water harvesting, anti-icing, and microfluidic manipulation. Natural organisms have evolved a myriad of surfaces with specialized functions that manipulate liquids by virtue of their surface structure and chemical composition. These surfaces provide an extremely rich source of inspiration for controlled fluid transfer. The study of the fundamentals of what happens between droplets and functional surfaces and the close interactions is essential for the development of technologies and solutions in different fields. Exploring the inherent workings of droplet manipulation on natural biosurfaces can inspire the design and development of superwettable materials. This review deepens the understanding of directed fluid dynamics by summarizing interface fluid dynamics theory and mechanisms. It presents the fundamental principles of directed fluid dynamics on typical natural biological surfaces. Additionally, it elucidates the fluid dynamics behavior and applications of a diverse set of smart functional surfaces inspired by natural organisms. Simultaneously, it shares its view on superwetting interface liquid dynamics challenges and opportunities, pushing for next-generation biomimetic superwettable materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.