Bioinspired Nanochitin-Based Porous Constructs for Light-Driven Whole-Cell Biotransformations

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Vishnu Arumughan, Hitesh Medipally, Arun Torris, Tuukka Levä, Hanna C. Grimm, Tekla Tammelin, Robert Kourist, Eero Kontturi
{"title":"Bioinspired Nanochitin-Based Porous Constructs for Light-Driven Whole-Cell Biotransformations","authors":"Vishnu Arumughan, Hitesh Medipally, Arun Torris, Tuukka Levä, Hanna C. Grimm, Tekla Tammelin, Robert Kourist, Eero Kontturi","doi":"10.1002/adma.202413058","DOIUrl":null,"url":null,"abstract":"Solid-state photosynthetic cell factories (SSPCFs) are a new production concept that leverages the innate photosynthetic abilities of microbes to drive the production of valuable chemicals. It addresses practical challenges such as high energy and water demand and improper light distribution associated with suspension-based culturing; however, these systems often face significant challenges related to mass transfer. The approach focuses on overcoming these limitations by carefully engineering the microstructure of the immobilization matrix through freeze-induced assembly of nanochitin building blocks. The use of nanochitins with optimized size distribution enabled the formation of macropores with lamellar spatial organization, which significantly improves light transmittance and distribution, crucial for maximizing the efficiency of photosynthetic reactions. The biomimetic crosslinking strategy, leveraging specific interactions between polyphosphate anions and primary amine groups featured on chitin fibers, produced mechanically robust and wet-resilient cryogels that maintained their functionality under operational conditions. Various model biotransformation reactions leading to value-added chemicals are performed in chitin-based matrix. It demonstrates superior or comparable performance to existing state-of-the-art matrices and suspension-based systems. The findings suggest that chitin-based cryogel approach holds significant promise for advancing the development of solid-state photosynthetic cell factories, offering a scalable solution to improve the efficiency and productivity of light-driven biotransformation.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"40 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413058","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state photosynthetic cell factories (SSPCFs) are a new production concept that leverages the innate photosynthetic abilities of microbes to drive the production of valuable chemicals. It addresses practical challenges such as high energy and water demand and improper light distribution associated with suspension-based culturing; however, these systems often face significant challenges related to mass transfer. The approach focuses on overcoming these limitations by carefully engineering the microstructure of the immobilization matrix through freeze-induced assembly of nanochitin building blocks. The use of nanochitins with optimized size distribution enabled the formation of macropores with lamellar spatial organization, which significantly improves light transmittance and distribution, crucial for maximizing the efficiency of photosynthetic reactions. The biomimetic crosslinking strategy, leveraging specific interactions between polyphosphate anions and primary amine groups featured on chitin fibers, produced mechanically robust and wet-resilient cryogels that maintained their functionality under operational conditions. Various model biotransformation reactions leading to value-added chemicals are performed in chitin-based matrix. It demonstrates superior or comparable performance to existing state-of-the-art matrices and suspension-based systems. The findings suggest that chitin-based cryogel approach holds significant promise for advancing the development of solid-state photosynthetic cell factories, offering a scalable solution to improve the efficiency and productivity of light-driven biotransformation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信