Yajian Gao, Frederik Tilmann, Xiaohui Yuan, Andreas Rietbrock, Sofia-Katerina Kufner, Wei Li, Bernd Schurr, Andreas Fichtner
{"title":"Unraveling the Mantle Dynamics in Central Asia With Joint Full Waveform Inversion","authors":"Yajian Gao, Frederik Tilmann, Xiaohui Yuan, Andreas Rietbrock, Sofia-Katerina Kufner, Wei Li, Bernd Schurr, Andreas Fichtner","doi":"10.1029/2024JB030061","DOIUrl":null,"url":null,"abstract":"<p>We use the full waveform inversion method to study the crustal-mantle seismic structure beneath Central Asia. By combining earthquake waveforms and ambient noise cross-correlations, we construct a 3D model of Vp and Vs down to a depth of 220 km. This model reveals a complex Indian-Asian plate configuration and interaction, resulting from the plate subduction, indentation, and break-off. Beneath the Hindu Kush, the marginal Indian slab with its lower crust is successfully imaged, the latter of which hosts vigorous intermediate-depth seismicity. The subducted marginal Indian slab can be traced further east to the Kohistan Arc, which is a previously undetected structure. We first imaged a flat cratonic Indian plate beneath the Pamir. The indentation of the cratonic Indian plate forces the Asian plate to delaminate, indicated by the south-eastwards dipping high-velocity anomalies, atop which a south-dipping low-velocity zone is observed with higher resolution than previous studies, which we interpret as the delaminated Asian lower crust. In addition, a sharp velocity transition at lithospheric depth is newly discovered and coincides with the Talas-Ferghana fault, delineating the boundary of the Ferghana basin with the Central Tian Shan. Low-velocity anomalies mainly focus beneath the south and northern part of the Central Tian Shan with deep Moho, indicating the lithosphere is possibly delaminated and the deformation of the Central Tian Shan is probably concentrated at the north and south margins by the Tarim basin and Kazakh Shield, respectively. In contrast, West Tian Shan displays a simpler lithospheric structure with a single deep Moho.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB030061","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use the full waveform inversion method to study the crustal-mantle seismic structure beneath Central Asia. By combining earthquake waveforms and ambient noise cross-correlations, we construct a 3D model of Vp and Vs down to a depth of 220 km. This model reveals a complex Indian-Asian plate configuration and interaction, resulting from the plate subduction, indentation, and break-off. Beneath the Hindu Kush, the marginal Indian slab with its lower crust is successfully imaged, the latter of which hosts vigorous intermediate-depth seismicity. The subducted marginal Indian slab can be traced further east to the Kohistan Arc, which is a previously undetected structure. We first imaged a flat cratonic Indian plate beneath the Pamir. The indentation of the cratonic Indian plate forces the Asian plate to delaminate, indicated by the south-eastwards dipping high-velocity anomalies, atop which a south-dipping low-velocity zone is observed with higher resolution than previous studies, which we interpret as the delaminated Asian lower crust. In addition, a sharp velocity transition at lithospheric depth is newly discovered and coincides with the Talas-Ferghana fault, delineating the boundary of the Ferghana basin with the Central Tian Shan. Low-velocity anomalies mainly focus beneath the south and northern part of the Central Tian Shan with deep Moho, indicating the lithosphere is possibly delaminated and the deformation of the Central Tian Shan is probably concentrated at the north and south margins by the Tarim basin and Kazakh Shield, respectively. In contrast, West Tian Shan displays a simpler lithospheric structure with a single deep Moho.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.