Alexandra C. Coconis, Kenneth E. Nussear, Rebecca J. Rowe, Angela D. Hornsby, Marjorie D. Matocq
{"title":"The role of climate and species interactions in determining the distribution of two elevationally segregated species of small mammals through time","authors":"Alexandra C. Coconis, Kenneth E. Nussear, Rebecca J. Rowe, Angela D. Hornsby, Marjorie D. Matocq","doi":"10.1111/ecog.07556","DOIUrl":null,"url":null,"abstract":"The relative importance of abiotic and biotic factors in determining species distributions has long been of interest to ecologists but is often difficult to assess due to the lack of spatially and temporally robust occurrence records. Furthermore, locating places where potentially highly competitive species co-occur may be challenging but would provide critical knowledge into the effects of competition on species ranges. We built species distribution models for two closely related species of small mammals (<i>Neotoma</i>) that are largely parapatric along mountainsides throughout the Great Basin Desert, USA using extensive modern occurrence records. We hindcasted these models to the mid-Holocene to compare the response of each species to dramatic climatic change and used paleontological records to validate our models. Model results showed species co-occurrence at mid-elevations along select mountain ranges in this region. We confirmed our model results with fine-scale field surveys in a single mountain range containing one of the most extensive survey datasets across an elevational gradient in the Great Basin. We found close alignment of realized distributions to the respective abiotic species distribution model predictions, despite the presence of the congener, indicating that climate may be more influential than competition in shaping distribution at the scale of a single mountain range. Our models also predict differential species responses to historic climate change, leading to reduced probability of species interactions during warmer and dryer climatic conditions. Our results emphasize the utility of examining species distributions with regard to both abiotic variables and species interactions and at various spatial scales to make inferences about the mechanisms underlying distributional limits.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"40 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07556","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The relative importance of abiotic and biotic factors in determining species distributions has long been of interest to ecologists but is often difficult to assess due to the lack of spatially and temporally robust occurrence records. Furthermore, locating places where potentially highly competitive species co-occur may be challenging but would provide critical knowledge into the effects of competition on species ranges. We built species distribution models for two closely related species of small mammals (Neotoma) that are largely parapatric along mountainsides throughout the Great Basin Desert, USA using extensive modern occurrence records. We hindcasted these models to the mid-Holocene to compare the response of each species to dramatic climatic change and used paleontological records to validate our models. Model results showed species co-occurrence at mid-elevations along select mountain ranges in this region. We confirmed our model results with fine-scale field surveys in a single mountain range containing one of the most extensive survey datasets across an elevational gradient in the Great Basin. We found close alignment of realized distributions to the respective abiotic species distribution model predictions, despite the presence of the congener, indicating that climate may be more influential than competition in shaping distribution at the scale of a single mountain range. Our models also predict differential species responses to historic climate change, leading to reduced probability of species interactions during warmer and dryer climatic conditions. Our results emphasize the utility of examining species distributions with regard to both abiotic variables and species interactions and at various spatial scales to make inferences about the mechanisms underlying distributional limits.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.