{"title":"Rewritable ITO Patterning for Nanophotonics","authors":"Xinqin Liu, Pan Peng, Zhenyang Zhang, Xiangyu Zhao, Wenyu Chen, Shiyuan Liu, Jinlong Zhu","doi":"10.1002/lpor.202401799","DOIUrl":null,"url":null,"abstract":"Nanophotonic devices leverage unique interactions between photons and materials at the nanoscale, enabling applications in optical communication, biosensing, and quantum computing. These devices' properties are susceptible to material composition and structural design. Nanofabrication techniques, such as optical lithography, e-beam lithography, two-photon polymerization, and direct laser writing, have been widely applied to fabricate nanophotonic devices. Notably, rewritable fabrication stands out due to its low cost, flexibility, efficiency, and multi-functionality. In this paper, a novel rewritable nanofabrication technique is proposed, which combines electrochemical reactions with direct laser writing, to fabricate nanophotonic devices on low-cost indium tin oxide (ITO) films. The experimental results have demonstrated that high-quality and erasable photonic structures such as diffraction gratings and holography masks can be directly fabricated using our technique. Hence, it is believed that this method can be applied in diverse fields such as nanophotonics, optoelectronic devices, biosensors, micro-electromechanical systems, and nonlinear optics.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"19 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401799","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanophotonic devices leverage unique interactions between photons and materials at the nanoscale, enabling applications in optical communication, biosensing, and quantum computing. These devices' properties are susceptible to material composition and structural design. Nanofabrication techniques, such as optical lithography, e-beam lithography, two-photon polymerization, and direct laser writing, have been widely applied to fabricate nanophotonic devices. Notably, rewritable fabrication stands out due to its low cost, flexibility, efficiency, and multi-functionality. In this paper, a novel rewritable nanofabrication technique is proposed, which combines electrochemical reactions with direct laser writing, to fabricate nanophotonic devices on low-cost indium tin oxide (ITO) films. The experimental results have demonstrated that high-quality and erasable photonic structures such as diffraction gratings and holography masks can be directly fabricated using our technique. Hence, it is believed that this method can be applied in diverse fields such as nanophotonics, optoelectronic devices, biosensors, micro-electromechanical systems, and nonlinear optics.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.