A Free Energy Model for the Plateau Shear Modulus in Thermosensitive Microgel Suspensions

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Maxime Bergman, Yixuan Xu, José Muñéton Díaz, Chi Zhang, Thomas G. Mason, Frank Scheffold
{"title":"A Free Energy Model for the Plateau Shear Modulus in Thermosensitive Microgel Suspensions","authors":"Maxime Bergman, Yixuan Xu, José Muñéton Díaz, Chi Zhang, Thomas G. Mason, Frank Scheffold","doi":"10.1021/acs.langmuir.4c04528","DOIUrl":null,"url":null,"abstract":"Polymer microgels exhibit intriguing macroscopic flow properties arising from their unique microscopic structure. Microgel colloids usually comprise a cross-linked polymer network with a radially decaying density profile, resulting in a dense core surrounded by a fuzzy corona. Notably, microgels synthesized from poly(<i>N</i>-isopropylacrylamide) (PNIPAM) are thermoresponsive and capable of adjusting their size and density profile based on temperature. Above the lower critical solution temperature (<i></i><math display=\"inline\"><msub><mrow><mi>T</mi></mrow><mrow><mi>LCST</mi></mrow></msub><mo>∼</mo><mn>33</mn></math> °C), the microgel’s polymer network collapses, expulsing water through a reversible process. Conversely, below 33 °C, the microgel’s network swells, becoming highly compressible and allowing overpacking to effective volume fractions exceeding one. Under conditions of dense packing, microgels undergo deformation in distinct stages: corona compression and faceting, interpenetration, and finally, isotropic compression. Each stage exhibits a characteristic signature in the dense microgel suspensions’ yield stress and elastic modulus. Here, we introduce a model for the linear elastic shear modulus by minimizing a quasi-equilibrium free energy, encompassing all relevant energetic contributions. We validate our model by comparing its predictions to experimental results from oscillatory shear rheology tests on microgel suspensions at different densities and temperatures. Our findings demonstrate that combining macroscopic rheological measurements with the model allows for temperature-dependent characterization of polymer interaction parameters.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"246 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04528","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer microgels exhibit intriguing macroscopic flow properties arising from their unique microscopic structure. Microgel colloids usually comprise a cross-linked polymer network with a radially decaying density profile, resulting in a dense core surrounded by a fuzzy corona. Notably, microgels synthesized from poly(N-isopropylacrylamide) (PNIPAM) are thermoresponsive and capable of adjusting their size and density profile based on temperature. Above the lower critical solution temperature (TLCST33 °C), the microgel’s polymer network collapses, expulsing water through a reversible process. Conversely, below 33 °C, the microgel’s network swells, becoming highly compressible and allowing overpacking to effective volume fractions exceeding one. Under conditions of dense packing, microgels undergo deformation in distinct stages: corona compression and faceting, interpenetration, and finally, isotropic compression. Each stage exhibits a characteristic signature in the dense microgel suspensions’ yield stress and elastic modulus. Here, we introduce a model for the linear elastic shear modulus by minimizing a quasi-equilibrium free energy, encompassing all relevant energetic contributions. We validate our model by comparing its predictions to experimental results from oscillatory shear rheology tests on microgel suspensions at different densities and temperatures. Our findings demonstrate that combining macroscopic rheological measurements with the model allows for temperature-dependent characterization of polymer interaction parameters.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信