{"title":"Microbial carbon use for incorporating biomass phosphorus drives CO2 emission in phosphorus-supplied subtropical forest soils","authors":"Jianghao Tan, Muhammed Mustapha Ibrahim, Huiying Lin, Zhaofeng Chang, Conghui Guo, Zhimin Li, Xianzhen Luo, Yongbiao Lin, Enqing Hou","doi":"10.5194/egusphere-2025-310","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Subtropical forests store significant amounts of soil organic carbon (SOC) and are important in the global C cycle. Current understandings based on controlled experiments indicate that phosphorus (P) availability promotes SOC decomposition by alleviating microbial P limitation or rendering SOC available for microbial decomposition. While no alternative mechanism is currently known, it is uncertain if this mechanism holds across soils or P supply levels at the field scale. We formulated an alternative mechanism for acidic subtropical forest soils where organic C (OC) is bound to iron (Fe). Our hypothesis proposed that P supply would promote Fe-bound P formation and desorption of OC previously bound to Fe, and the microbial utilization of the desorbed OC for P-cycling contributes significantly to CO<sub>2</sub> emission. We tested our hypotheses by utilizing a forest P addition platform to explore C-dynamics, its regulators, and utilization across four P supply levels: 0, 25, 50, and 100 kg P ha<sup>-1</sup> yr<sup>-1 </sup>(Con, P1, P2, and P3, respectively) for one year. Phosphorus supply significantly increased the periodic and cumulative dissolved OC (DOC) concentration, especially in P3, and was associated with increased iron (Fe)-bound P formation. With increased DOC following P addition, microbial biomass P (MBP) significantly increased, while MBC remained unchanged. The significantly positive relationship between MBP:MBC ratio and DOC, significant increase in MBP and carbon dioxide (CO<sub>2</sub>) emission with P addition, and the reduction in CO<sub>2 </sub>emission with increasing MBC:MBP ratio (0–10 cm) supports our results that the desorbed-C alleviated microbial C-limitation induced during P-cycling, particularly, MBP incorporation, to drive CO<sub>2 </sub>emission. Structural equation modeling and multivariate analyses projected MBP as a critical factor inducing CO<sub>2</sub> emission. Besides, insignificant alterations in the relative abundance of C-degrading functional genes and reductions in P- and C-degrading enzyme activity indicated the sufficiency of desorbed OC for microbial use without further SOC degradation. Our study provides an alternative mechanism of P's impact on soil C-cycling processes in acidic subtropical forest soils vital for constraining process-based C models.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"38 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-310","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Subtropical forests store significant amounts of soil organic carbon (SOC) and are important in the global C cycle. Current understandings based on controlled experiments indicate that phosphorus (P) availability promotes SOC decomposition by alleviating microbial P limitation or rendering SOC available for microbial decomposition. While no alternative mechanism is currently known, it is uncertain if this mechanism holds across soils or P supply levels at the field scale. We formulated an alternative mechanism for acidic subtropical forest soils where organic C (OC) is bound to iron (Fe). Our hypothesis proposed that P supply would promote Fe-bound P formation and desorption of OC previously bound to Fe, and the microbial utilization of the desorbed OC for P-cycling contributes significantly to CO2 emission. We tested our hypotheses by utilizing a forest P addition platform to explore C-dynamics, its regulators, and utilization across four P supply levels: 0, 25, 50, and 100 kg P ha-1 yr-1 (Con, P1, P2, and P3, respectively) for one year. Phosphorus supply significantly increased the periodic and cumulative dissolved OC (DOC) concentration, especially in P3, and was associated with increased iron (Fe)-bound P formation. With increased DOC following P addition, microbial biomass P (MBP) significantly increased, while MBC remained unchanged. The significantly positive relationship between MBP:MBC ratio and DOC, significant increase in MBP and carbon dioxide (CO2) emission with P addition, and the reduction in CO2 emission with increasing MBC:MBP ratio (0–10 cm) supports our results that the desorbed-C alleviated microbial C-limitation induced during P-cycling, particularly, MBP incorporation, to drive CO2 emission. Structural equation modeling and multivariate analyses projected MBP as a critical factor inducing CO2 emission. Besides, insignificant alterations in the relative abundance of C-degrading functional genes and reductions in P- and C-degrading enzyme activity indicated the sufficiency of desorbed OC for microbial use without further SOC degradation. Our study provides an alternative mechanism of P's impact on soil C-cycling processes in acidic subtropical forest soils vital for constraining process-based C models.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).