Anita Galir, Dubravka Špoljarić Maronić, Filip Stević, Tanja Žuna Pfeiffer, Matea Dent, Tena Minarik
{"title":"Microplastics and the freshwater plankton: effects on grazing and mortality","authors":"Anita Galir, Dubravka Špoljarić Maronić, Filip Stević, Tanja Žuna Pfeiffer, Matea Dent, Tena Minarik","doi":"10.1016/j.jhazmat.2025.137497","DOIUrl":null,"url":null,"abstract":"When studying the effects of microplastics (MP) on zooplankton in freshwater environments, there is a knowledge gap at the community level, as most studies use monocultures under laboratory conditions with limited comparability to field studies. The aim of our study was to investigate the uptake of MP at environmentally relevant concentrations by a natural zooplankton community feeding on native phytoplankton. Rotifers and cladocerans comprised more than 96% of total zooplankton community, while nauplii and copepodites dominated the copepod community. To test the possible change in phytoplankton grazing and zooplankton mortality after MP exposure, zooplankton were exposed to three different polyethylene MP sizes: A (1-5<!-- --> <!-- -->µm), B (27-32<!-- --> <!-- -->µm), and C (45-53<!-- --> <!-- -->µm) during 96<!-- --> <!-- -->hours. Ingestion in group A was observed in 34% of rotifers, 20% of cladocerans and 67% of copepods. In group B, only cladocerans ingested MP, and to a much lower extent (2%), which could be due to the composition of the community. None of the zooplankton studied ingested MP particles in group C. The ingestion of MP decreased phytoplankton consumption, and phytoplankton abundance varied greatly between samples. The highest phytoplankton abundance was observed in the A samples with the highest proportion of ingested MP, indicating a significant reduction in grazing pressure that allowed phytoplankton to proliferate. This result, combined with the highest mortality of cladocerans in the A samples (12.7 ± 0.91%), indicates the negative impact of MP on the normal functioning of the freshwater plankton food web.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"22 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137497","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
When studying the effects of microplastics (MP) on zooplankton in freshwater environments, there is a knowledge gap at the community level, as most studies use monocultures under laboratory conditions with limited comparability to field studies. The aim of our study was to investigate the uptake of MP at environmentally relevant concentrations by a natural zooplankton community feeding on native phytoplankton. Rotifers and cladocerans comprised more than 96% of total zooplankton community, while nauplii and copepodites dominated the copepod community. To test the possible change in phytoplankton grazing and zooplankton mortality after MP exposure, zooplankton were exposed to three different polyethylene MP sizes: A (1-5 µm), B (27-32 µm), and C (45-53 µm) during 96 hours. Ingestion in group A was observed in 34% of rotifers, 20% of cladocerans and 67% of copepods. In group B, only cladocerans ingested MP, and to a much lower extent (2%), which could be due to the composition of the community. None of the zooplankton studied ingested MP particles in group C. The ingestion of MP decreased phytoplankton consumption, and phytoplankton abundance varied greatly between samples. The highest phytoplankton abundance was observed in the A samples with the highest proportion of ingested MP, indicating a significant reduction in grazing pressure that allowed phytoplankton to proliferate. This result, combined with the highest mortality of cladocerans in the A samples (12.7 ± 0.91%), indicates the negative impact of MP on the normal functioning of the freshwater plankton food web.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.