{"title":"Observation of the non-Hermitian skin effect and Fermi skin on a digital quantum computer","authors":"Ruizhe Shen, Tianqi Chen, Bo Yang, Ching Hua Lee","doi":"10.1038/s41467-025-55953-4","DOIUrl":null,"url":null,"abstract":"<p>Lately, the non-Hermitian skin effect (NHSE) has been demonstrated in various classical metamaterials and even ultracold atomic arrays. Yet, its interplay with many-body dynamics have never been experimentally investigated. Here, we report the observation of the NHSE and its many-fermion analog on a universal quantum processor. To implement NHSE accumulation on a quantum computer, the time-evolution circuit not only needs to be non-reciprocal and non-unitary, but must also contain sufficiently many lattice qubits. We demonstrate this by systematically post-selecting ancilla qubits, as demonstrated through two paradigmatic non-reciprocal models on noisy quantum processors, with clear signatures of asymmetric spatial propagation and many-body “Fermi skin” accumulation. To minimize errors from inevitable device noise, time evolution is performed using trainable, variationally optimized quantum circuits. Our demonstration represents an important step in the quantum simulation of non-Hermitian lattices on present-day quantum hardware, and can be readily generalized to more sophisticated many-body models.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-55953-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Lately, the non-Hermitian skin effect (NHSE) has been demonstrated in various classical metamaterials and even ultracold atomic arrays. Yet, its interplay with many-body dynamics have never been experimentally investigated. Here, we report the observation of the NHSE and its many-fermion analog on a universal quantum processor. To implement NHSE accumulation on a quantum computer, the time-evolution circuit not only needs to be non-reciprocal and non-unitary, but must also contain sufficiently many lattice qubits. We demonstrate this by systematically post-selecting ancilla qubits, as demonstrated through two paradigmatic non-reciprocal models on noisy quantum processors, with clear signatures of asymmetric spatial propagation and many-body “Fermi skin” accumulation. To minimize errors from inevitable device noise, time evolution is performed using trainable, variationally optimized quantum circuits. Our demonstration represents an important step in the quantum simulation of non-Hermitian lattices on present-day quantum hardware, and can be readily generalized to more sophisticated many-body models.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.