Integrating hydroformylations with methanol-to-syngas reforming

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-03-13 DOI:10.1016/j.chempr.2024.102396
Andreas Bonde , Joakim Bøgelund Jakobsen , Alexander Ahrens , Weiheng Huang , Ralf Jackstell , Matthias Beller , Troels Skrydstrup
{"title":"Integrating hydroformylations with methanol-to-syngas reforming","authors":"Andreas Bonde ,&nbsp;Joakim Bøgelund Jakobsen ,&nbsp;Alexander Ahrens ,&nbsp;Weiheng Huang ,&nbsp;Ralf Jackstell ,&nbsp;Matthias Beller ,&nbsp;Troels Skrydstrup","doi":"10.1016/j.chempr.2024.102396","DOIUrl":null,"url":null,"abstract":"<div><div>Commodity chemical production is heavily dependent on fossil feedstocks. Transitioning to renewable resources is a pressing necessity, with green methanol being a promising candidate for rethinking chemical platforms. Here, we report how interlocking methanol-to-syngas reforming and hydroformylation of olefins may integrate methanol as a platform for accessing renewable oxo-products. This study demonstrates the importance of interlocking kinetics and selectivity of a ruthenium-catalyzed acceptorless dehydrogenation and a rhodium-catalyzed hydroformylation. Notably, coal- or natural gas-derived syngas can be substituted with fuel-grade e-methanol obtained from captured CO<sub>2</sub> and green hydrogen. Although these conditions do not replicate large-scale industrial settings, we consider this dual-catalysis approach a proof of concept illustrating the potential to synthesize oxo-products entirely from CO<sub>2</sub>-derived methanol. We envision that redesigning chemical value chains to extend from renewable platforms like methanol could play a pivotal role toward establishing a more sustainable chemical industry.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 3","pages":"Article 102396"},"PeriodicalIF":19.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424006417","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Commodity chemical production is heavily dependent on fossil feedstocks. Transitioning to renewable resources is a pressing necessity, with green methanol being a promising candidate for rethinking chemical platforms. Here, we report how interlocking methanol-to-syngas reforming and hydroformylation of olefins may integrate methanol as a platform for accessing renewable oxo-products. This study demonstrates the importance of interlocking kinetics and selectivity of a ruthenium-catalyzed acceptorless dehydrogenation and a rhodium-catalyzed hydroformylation. Notably, coal- or natural gas-derived syngas can be substituted with fuel-grade e-methanol obtained from captured CO2 and green hydrogen. Although these conditions do not replicate large-scale industrial settings, we consider this dual-catalysis approach a proof of concept illustrating the potential to synthesize oxo-products entirely from CO2-derived methanol. We envision that redesigning chemical value chains to extend from renewable platforms like methanol could play a pivotal role toward establishing a more sustainable chemical industry.

Abstract Image

Abstract Image

氢甲酰化与甲醇合成气重整相结合
商品化工生产严重依赖化石原料。向可再生资源过渡是迫切需要的,绿色甲醇是重新思考化学平台的有希望的候选者。在这里,我们报告了联锁甲醇制合成气重整和烯烃的氢甲酰化如何将甲醇作为获取可再生氧产物的平台。本研究证明了钌催化的无受体脱氢和铑催化的氢甲酰化联锁动力学和选择性的重要性。值得注意的是,煤或天然气衍生的合成气可以用从捕获的二氧化碳和绿色氢中获得的燃料级e-甲醇取代。虽然这些条件不能复制大规模的工业环境,但我们认为这种双催化方法证明了完全从二氧化碳衍生的甲醇合成氧产物的潜力。我们设想,重新设计化学品价值链,从甲醇等可再生平台延伸,可以在建立一个更可持续的化学工业方面发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信