Enhancing lipid production in plant cells through automated high-throughput genome editing and phenotyping

Jia Dong, Seth W Croslow, Stephan T Lane, Daniel C Castro, Jantana Blanford, Shuaizhen Zhou, Kiyoul Park, Steven Burgess, Mike Root, Edgar Cahoon, John Shanklin, Jonathan V Sweedler, Huimin Zhao, Matthew E Hudson
{"title":"Enhancing lipid production in plant cells through automated high-throughput genome editing and phenotyping","authors":"Jia Dong, Seth W Croslow, Stephan T Lane, Daniel C Castro, Jantana Blanford, Shuaizhen Zhou, Kiyoul Park, Steven Burgess, Mike Root, Edgar Cahoon, John Shanklin, Jonathan V Sweedler, Huimin Zhao, Matthew E Hudson","doi":"10.1093/plcell/koaf026","DOIUrl":null,"url":null,"abstract":"Plant bioengineering is a time-consuming and labor-intensive process with no guarantee of achieving desired traits. Here, we present a fast, automated, scalable, high-throughput pipeline for plant bioengineering (FAST-PB) in maize (Zea mays) and Nicotiana benthamiana. FAST-PB enables genome editing and product characterization by integrating automated biofoundry engineering of callus and protoplast cells with single-cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We first demonstrated that FAST-PB could streamline Golden Gate cloning, with the capacity to construct 96 vectors in parallel. Using FAST-PB in protoplasts, we found that PEG2050 increased transfection efficiency by over 45%. For proof-of-concept, we established a reporter-gene-free method for CRISPR editing and phenotyping via mutation of high chlorophyl fluorescence 136 (HCF136). We show that diverse lipids were enhanced up to sixfold using CRISPR activation of lipid controlling genes. In callus cells, an automated transformation platform was employed to regenerate plants with enhanced lipid traits through introducing multi-gene cassettes. Lastly, FAST-PB enabled high-throughput single-cell lipid profiling by integrating MALDI-MS with the biofoundry, protoplast, and callus cells, differentiating engineered and unengineered cells using single-cell lipidomics. These innovations massively increase the throughput of synthetic biology, genome editing, and metabolic engineering and change what is possible using single-cell metabolomics in plants.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plant bioengineering is a time-consuming and labor-intensive process with no guarantee of achieving desired traits. Here, we present a fast, automated, scalable, high-throughput pipeline for plant bioengineering (FAST-PB) in maize (Zea mays) and Nicotiana benthamiana. FAST-PB enables genome editing and product characterization by integrating automated biofoundry engineering of callus and protoplast cells with single-cell matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). We first demonstrated that FAST-PB could streamline Golden Gate cloning, with the capacity to construct 96 vectors in parallel. Using FAST-PB in protoplasts, we found that PEG2050 increased transfection efficiency by over 45%. For proof-of-concept, we established a reporter-gene-free method for CRISPR editing and phenotyping via mutation of high chlorophyl fluorescence 136 (HCF136). We show that diverse lipids were enhanced up to sixfold using CRISPR activation of lipid controlling genes. In callus cells, an automated transformation platform was employed to regenerate plants with enhanced lipid traits through introducing multi-gene cassettes. Lastly, FAST-PB enabled high-throughput single-cell lipid profiling by integrating MALDI-MS with the biofoundry, protoplast, and callus cells, differentiating engineered and unengineered cells using single-cell lipidomics. These innovations massively increase the throughput of synthetic biology, genome editing, and metabolic engineering and change what is possible using single-cell metabolomics in plants.
通过自动化高通量基因组编辑和表型分析增强植物细胞的脂质生产
植物生物工程是一个费时费力的过程,不能保证获得所需的性状。在这里,我们提出了一种快速、自动化、可扩展、高通量的植物生物工程管道(fast - pb),用于玉米(Zea mays)和本烟(Nicotiana benthamiana)。FAST-PB通过将愈伤组织和原生质体细胞的自动化生物铸造厂工程与单细胞基质辅助激光解吸/电离质谱(MALDI-MS)相结合,实现基因组编辑和产品表征。我们首先证明FAST-PB可以简化金门克隆,具有并行构建96个载体的能力。在原生质体中使用FAST-PB,我们发现PEG2050的转染效率提高了45%以上。为了验证概念,我们建立了一种无报告基因的方法,通过高叶绿素荧光136 (HCF136)突变进行CRISPR编辑和表型分型。我们发现,使用CRISPR激活脂质控制基因,多种脂质被增强了6倍。在愈伤组织细胞中,通过引入多基因盒,利用自动化转化平台再生具有增强脂质性状的植株。最后,FAST-PB通过将MALDI-MS与生物铸造厂、原生质体和愈伤组织细胞结合,利用单细胞脂质组学区分工程细胞和非工程细胞,实现了高通量单细胞脂质分析。这些创新极大地提高了合成生物学、基因组编辑和代谢工程的吞吐量,并改变了在植物中使用单细胞代谢组学的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信