Sebastian Sorge, Victor Girard, Lena Lampe, Vanessa Tixier, Alexandra Weaver, Theresa Higgins, Alex P. Gould
{"title":"A Drosophila holidic diet optimized for growth and development","authors":"Sebastian Sorge, Victor Girard, Lena Lampe, Vanessa Tixier, Alexandra Weaver, Theresa Higgins, Alex P. Gould","doi":"10.1016/j.devcel.2025.01.008","DOIUrl":null,"url":null,"abstract":"Diets composed of chemically pure components (holidic diets) are useful for determining the metabolic roles of individual nutrients. For the model organism <em>Drosophila melanogaster</em>, existing holidic diets are unable to support the rapid growth characteristic of the larval stage. Here, we use a nutrient co-optimization strategy across more than 50 diet variants to design a holidic diet for fast development (HolFast), a holidic medium tailored for fast larval growth and development. We identify dietary amino acid ratios optimal for developmental speed but show that they compromise survival unless vitamins and sterols are co-optimized. Rapid development on HolFast is not improved by adding fatty acids, but it is dependent upon their <em>de novo</em> synthesis in the fat body via fatty acid synthase (<em>FASN</em>). HolFast outperforms other holidic diets, supporting rates of growth and development close to those of yeast-based diets and, under germ-free conditions, identical. HolFast has wide applications in nutritional and metabolic studies of <em>Drosophila</em> development.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"133 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.01.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diets composed of chemically pure components (holidic diets) are useful for determining the metabolic roles of individual nutrients. For the model organism Drosophila melanogaster, existing holidic diets are unable to support the rapid growth characteristic of the larval stage. Here, we use a nutrient co-optimization strategy across more than 50 diet variants to design a holidic diet for fast development (HolFast), a holidic medium tailored for fast larval growth and development. We identify dietary amino acid ratios optimal for developmental speed but show that they compromise survival unless vitamins and sterols are co-optimized. Rapid development on HolFast is not improved by adding fatty acids, but it is dependent upon their de novo synthesis in the fat body via fatty acid synthase (FASN). HolFast outperforms other holidic diets, supporting rates of growth and development close to those of yeast-based diets and, under germ-free conditions, identical. HolFast has wide applications in nutritional and metabolic studies of Drosophila development.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.