Cloned airway basal progenitor cells to repair fibrotic lung through re-epithelialization

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yu Zhao, Yueqing Zhou, Weipan Zhang, Mingzhe Liu, Jun Duan, Xiaopeng Zhang, Qiwang Ma, Yujia Wang, Yuzhen Zhang, Zhongliang Guo, Ting Zhang, Wei Zuo
{"title":"Cloned airway basal progenitor cells to repair fibrotic lung through re-epithelialization","authors":"Yu Zhao, Yueqing Zhou, Weipan Zhang, Mingzhe Liu, Jun Duan, Xiaopeng Zhang, Qiwang Ma, Yujia Wang, Yuzhen Zhang, Zhongliang Guo, Ting Zhang, Wei Zuo","doi":"10.1038/s41467-025-56501-w","DOIUrl":null,"url":null,"abstract":"<p>Irreversible damage of the lung epithelium in idiopathic pulmonary fibrosis (IPF) patients causes high mortality worldwide, with no lung repair approaches available currently. Here we show that in murine and monkey models, the KRT5<sup>+</sup> P63<sup>+</sup> progenitor cells in airway basal layer can enter the alveolar area post fibrotic injury. Aided with an automated culture system, we clone and characterize airway basal progenitor cells from 44 donors with various lung conditions. Transplantation of human progenitor cells into the mouse lung efficiently re-epithelializes the injured alveolar area, forms new respiratory tract and saccule-like structures, which ameliorates fibrotic lesions and improves survival of mice. Mechanistically, the engrafted human progenitor cells do not function by differentiating into mature alveolar cells in mouse lung; instead, they differentiate into saccular cells expressing multiple tight junction proteins such as CLDN4, which help the lung to re-establish epithelial barriers. Furthermore, by cloning P63<sup>+</sup> airway basal progenitors from larger mammals and birds, we construct multiple lung-chimerism animals and uncover the evolutionarily conserved roles of these progenitor cells in lung repair. Overall, our data highlight the fate of airway basal progenitor cells in fibrotic lung and provide a potential therapeutic strategy for pulmonary diseases that lack inherent recovery mechanisms.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"38 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56501-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Irreversible damage of the lung epithelium in idiopathic pulmonary fibrosis (IPF) patients causes high mortality worldwide, with no lung repair approaches available currently. Here we show that in murine and monkey models, the KRT5+ P63+ progenitor cells in airway basal layer can enter the alveolar area post fibrotic injury. Aided with an automated culture system, we clone and characterize airway basal progenitor cells from 44 donors with various lung conditions. Transplantation of human progenitor cells into the mouse lung efficiently re-epithelializes the injured alveolar area, forms new respiratory tract and saccule-like structures, which ameliorates fibrotic lesions and improves survival of mice. Mechanistically, the engrafted human progenitor cells do not function by differentiating into mature alveolar cells in mouse lung; instead, they differentiate into saccular cells expressing multiple tight junction proteins such as CLDN4, which help the lung to re-establish epithelial barriers. Furthermore, by cloning P63+ airway basal progenitors from larger mammals and birds, we construct multiple lung-chimerism animals and uncover the evolutionarily conserved roles of these progenitor cells in lung repair. Overall, our data highlight the fate of airway basal progenitor cells in fibrotic lung and provide a potential therapeutic strategy for pulmonary diseases that lack inherent recovery mechanisms.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信