Longlong Ma, Jun Ma, Pu Yan, Feng Tian, Josep Peñuelas, Mukund Palat Rao, Yongshuo Fu, Zhenhong Hu
{"title":"Planted Forests in China Have Higher Drought Risk Than Natural Forests","authors":"Longlong Ma, Jun Ma, Pu Yan, Feng Tian, Josep Peñuelas, Mukund Palat Rao, Yongshuo Fu, Zhenhong Hu","doi":"10.1111/gcb.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To improve the environment and mitigate climate change, China has implemented ambitious projects for natural forest protection and expanded planted forests. However, increased climate variability has led to more frequent and severe droughts, exacerbating the decline of these forests. The drought risk of planted forests is rarely assessed by considering both resistance and resilience, and comparative analyses between natural and planted forests are lacking. Here, we compared drought resistance and resilience in natural and planted forests across China using satellite observations from 2001 to 2020 to understand which forests were at higher risk of drought. The results showed that planted forests exhibited lower drought resistance and resilience compared to natural forests, particularly in subtropical broad-leaved evergreen forests and warm temperate deciduous broad-leaved forests. Moreover, drought resistance in planted forests significantly increased, while resilience decreased during 2011–2020 compared to 2001–2010, suggesting a shift in the strategies of planted forests to cope with drought stress. The higher drought risk in planted forests compared to natural forests was mainly attributed to lower forest canopy height and poorer soil nutrients, which limited resistance, and lower canopy height and severe drought characteristics (severity, duration, and frequency), which reduced resilience. These results underscore the higher potential risk of drought exposure in planted forests. To mitigate future drought impacts on planted forests under climate change, enhanced management strategies, including the preservation of natural forests and augmentation of structural diversity in planted forests, are imperative.</p>\n </div>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70055","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the environment and mitigate climate change, China has implemented ambitious projects for natural forest protection and expanded planted forests. However, increased climate variability has led to more frequent and severe droughts, exacerbating the decline of these forests. The drought risk of planted forests is rarely assessed by considering both resistance and resilience, and comparative analyses between natural and planted forests are lacking. Here, we compared drought resistance and resilience in natural and planted forests across China using satellite observations from 2001 to 2020 to understand which forests were at higher risk of drought. The results showed that planted forests exhibited lower drought resistance and resilience compared to natural forests, particularly in subtropical broad-leaved evergreen forests and warm temperate deciduous broad-leaved forests. Moreover, drought resistance in planted forests significantly increased, while resilience decreased during 2011–2020 compared to 2001–2010, suggesting a shift in the strategies of planted forests to cope with drought stress. The higher drought risk in planted forests compared to natural forests was mainly attributed to lower forest canopy height and poorer soil nutrients, which limited resistance, and lower canopy height and severe drought characteristics (severity, duration, and frequency), which reduced resilience. These results underscore the higher potential risk of drought exposure in planted forests. To mitigate future drought impacts on planted forests under climate change, enhanced management strategies, including the preservation of natural forests and augmentation of structural diversity in planted forests, are imperative.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.