Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.

Zhuan Wen, Zhang-Zhi Song, Ming-Ze Cai, Ni-Yuan Zhang, Hao-Ze Li, Yang Yang, Qian-Ting Wang, Muhammad Hamza Ghafoor, Hong-Wei An, Hao Wang
{"title":"Biomimetic Nanomaterials Based on Peptide In Situ Self-Assembly for Immunotherapy Applications.","authors":"Zhuan Wen, Zhang-Zhi Song, Ming-Ze Cai, Ni-Yuan Zhang, Hao-Ze Li, Yang Yang, Qian-Ting Wang, Muhammad Hamza Ghafoor, Hong-Wei An, Hao Wang","doi":"10.1002/wnan.70005","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"17 1","pages":"e70005"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer remains the leading cause of patient death worldwide and its incidence continues to rise. Immunotherapy is rapidly developing due to its significant differences in the mechanism of action from conventional radiotherapy and targeted antitumor drugs. In the past decades, many biomaterials have been designed and prepared to construct therapeutic platforms that modulate the immune system against cancer. Immunotherapeutic platforms utilizing biomaterials can markedly enhance therapeutic efficacy by optimizing the delivery of therapeutic agents, minimizing drug loss during circulation, and amplifying immunomodulatory effects. The intricate physiological barriers of tumors, coupled with adverse immune environments such as inadequate infiltration, off-target effects, and immunosuppression, have emerged as significant obstacles impeding the effectiveness of oncology drug therapy. However, most of the current studies are devoted to the development of complex immunomodulators that exert immunomodulatory functions by loading drugs or adjuvants, ignoring the complex physiological barriers and adverse immune environments of tumors. Compared with conventional biomaterials, biomimetic nanomaterials based on peptide in situ self-assembly with excellent functional characteristics of biocompatibility, biodegradability, and bioactivity have emerged as a novel and effective tool for cancer immunotherapy. This article presents a comprehensive review of the latest research findings on biomimetic nanomaterials based on peptide in situ self-assembly in tumor immunotherapy. Initially, we categorize the structural types of biomimetic peptide nanomaterials and elucidate their intrinsic driving forces. Subsequently, we delve into the in situ self-assembly strategies of these peptide biomimetic nanomaterials, highlighting their advantages in immunotherapy. Furthermore, we detail the applications of these biomimetic nanomaterials in antigen presentation and modulation of the immune microenvironment. In conclusion, we encapsulate the challenges and prospective developments of biomimetic nanomaterials based on peptide in situ self-assembly for clinical translation in immunotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信