{"title":"Accuracy of a Cascade Network for Semi-Supervised Maxillary Sinus Detection and Sinus Cyst Classification","authors":"Xueqi Guo, Zelun Huang, Jieying Huang, Jialing Wei, Yongshan Li, Haoran Zheng, Shiyong Zhao","doi":"10.1111/cid.13431","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Maxillary sinus mucosal cysts represent prevalent oral and maxillofacial diseases, and their precise diagnosis is essential for surgical planning in maxillary sinus floor elevation. This study aimed to develop a deep learning-based pipeline for the classification of maxillary sinus lesions in cone beam computed tomography (CBCT) images to provide auxiliary support for clinical diagnosis.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>This study utilized 45 136 maxillary sinus images from CBCT scans of 541 patients. A cascade network was designed, comprising a semi-supervised maxillary sinus area object detection module and a maxillary sinus lesions classification module. The object detection module employed a semi-supervised pseudo-labelling training strategy to expand the maxillary sinus annotation dataset. In the classification module, the performance of Convolutional Neural Network and Transformer architectures was compared for maxillary sinus mucosal lesion classification. The object detection and classification modules were evaluated using metrics including Accuracy, Precision, Recall, F1 score, and Average Precision, with the object detection module additionally assessed using Precision-Recall Curve.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The fully supervised pseudo-label generation model achieved an average accuracy of 0.9433, while the semi-supervised maxillary sinus detection model attained 0.9403. ResNet-50 outperformed in classification, with accuracies of 0.9836 (sagittal) and 0.9797 (coronal). Grad-CAM visualization confirmed accurate focus on clinically relevant lesion features.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>The proposed pipeline achieves high-precision detection and classification of maxillary sinus mucosal lesions, reducing manual annotation while maintaining accuracy.</p>\n </section>\n </div>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.13431","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Maxillary sinus mucosal cysts represent prevalent oral and maxillofacial diseases, and their precise diagnosis is essential for surgical planning in maxillary sinus floor elevation. This study aimed to develop a deep learning-based pipeline for the classification of maxillary sinus lesions in cone beam computed tomography (CBCT) images to provide auxiliary support for clinical diagnosis.
Methods
This study utilized 45 136 maxillary sinus images from CBCT scans of 541 patients. A cascade network was designed, comprising a semi-supervised maxillary sinus area object detection module and a maxillary sinus lesions classification module. The object detection module employed a semi-supervised pseudo-labelling training strategy to expand the maxillary sinus annotation dataset. In the classification module, the performance of Convolutional Neural Network and Transformer architectures was compared for maxillary sinus mucosal lesion classification. The object detection and classification modules were evaluated using metrics including Accuracy, Precision, Recall, F1 score, and Average Precision, with the object detection module additionally assessed using Precision-Recall Curve.
Results
The fully supervised pseudo-label generation model achieved an average accuracy of 0.9433, while the semi-supervised maxillary sinus detection model attained 0.9403. ResNet-50 outperformed in classification, with accuracies of 0.9836 (sagittal) and 0.9797 (coronal). Grad-CAM visualization confirmed accurate focus on clinically relevant lesion features.
Conclusion
The proposed pipeline achieves high-precision detection and classification of maxillary sinus mucosal lesions, reducing manual annotation while maintaining accuracy.
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.