Perfluorohexane nanodroplet-assisted mechanical high intensity focused ultrasound cavitation: A strategy for hepatocellular carcinoma treatment

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jie Yang , Min Liao , Zhenru Wu , Xiaodi Liu , Zhiwen Zheng , Wenhui Wang , Zhe Wu , Qiang Lu
{"title":"Perfluorohexane nanodroplet-assisted mechanical high intensity focused ultrasound cavitation: A strategy for hepatocellular carcinoma treatment","authors":"Jie Yang ,&nbsp;Min Liao ,&nbsp;Zhenru Wu ,&nbsp;Xiaodi Liu ,&nbsp;Zhiwen Zheng ,&nbsp;Wenhui Wang ,&nbsp;Zhe Wu ,&nbsp;Qiang Lu","doi":"10.1016/j.actbio.2025.01.061","DOIUrl":null,"url":null,"abstract":"<div><div>The activation of immune-stimulatory molecules is critical for effective antitumor immunotherapy. Mechanical high-intensity focused ultrasound (mHIFU) sustains this activation in tumor cell debris through cavitation. To enhance cavitation, perfluorohexane nanodroplets (NDs-PFH) were utilized in this study to lower the cavitation threshold during mHIFU ablation. Our results showed that NDs-PFH combined with mHIFU induced 77.2 % Hepa 1–6 tumor cells death, and activated the release of damage-associated molecular patterns (such as HMGB1, CRT, and ATP), enhancing dendritic cell maturation (20.2 %) and <em>T</em> cell activation (1.8 % of TNF-α<sup>+</sup> and 2.7 % of IFN-γ<sup>+</sup>). In vivo<em>,</em> the combination of NDs-PFH and mHIFU effectively suppressed both primary and distant untreated tumors, reducing the tumor volume by 83.3 % (from 657.4 mm<sup>3</sup> to 110.0 mm<sup>3</sup>) and metastatic tumor volume by 76.6 % (from 365.5 mm<sup>3</sup> to 85.6 mm<sup>3</sup>) through enhanced anticancer immune response and a robust abscopal effect. Furthermore, combining NDs-PFH with mHIFU significantly enhanced the efficacy of immune checkpoint inhibitors in liver cancer. When combined with αPD-1 therapy, tumor inhibition improved by 30 % (from 63.6 mm<sup>3</sup> to 19.3 mm<sup>3</sup>) compared to αPD-1 monotherapy. These results highlight the potential of combining mHIFU with a PFH nano-loaded drug delivery system as a promising strategy for advancing antitumor immunotherapy.</div></div><div><h3>Statement of significance</h3><div>Mechanical high-intensity focused ultrasound (mHIFU) can ablate tumors via cavitation effects, however, achieving these effects typically requires an extremely high cavitation threshold. In this study, we utilized widely used perfluorohexane nanodroplets (NDs-PFH) to effectively lower the cavitation threshold. The tumor cell debris generated by the combination of NDs-PFH and mHIFU not only induced immunogenic cells death but also activated antitumor immune responses within the tumor microenvironment. Additionally, our findings demonstrated that this combination elicited a significant abscopal effect and enhanced the efficacy of immunotherapy.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 297-308"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000819","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The activation of immune-stimulatory molecules is critical for effective antitumor immunotherapy. Mechanical high-intensity focused ultrasound (mHIFU) sustains this activation in tumor cell debris through cavitation. To enhance cavitation, perfluorohexane nanodroplets (NDs-PFH) were utilized in this study to lower the cavitation threshold during mHIFU ablation. Our results showed that NDs-PFH combined with mHIFU induced 77.2 % Hepa 1–6 tumor cells death, and activated the release of damage-associated molecular patterns (such as HMGB1, CRT, and ATP), enhancing dendritic cell maturation (20.2 %) and T cell activation (1.8 % of TNF-α+ and 2.7 % of IFN-γ+). In vivo, the combination of NDs-PFH and mHIFU effectively suppressed both primary and distant untreated tumors, reducing the tumor volume by 83.3 % (from 657.4 mm3 to 110.0 mm3) and metastatic tumor volume by 76.6 % (from 365.5 mm3 to 85.6 mm3) through enhanced anticancer immune response and a robust abscopal effect. Furthermore, combining NDs-PFH with mHIFU significantly enhanced the efficacy of immune checkpoint inhibitors in liver cancer. When combined with αPD-1 therapy, tumor inhibition improved by 30 % (from 63.6 mm3 to 19.3 mm3) compared to αPD-1 monotherapy. These results highlight the potential of combining mHIFU with a PFH nano-loaded drug delivery system as a promising strategy for advancing antitumor immunotherapy.

Statement of significance

Mechanical high-intensity focused ultrasound (mHIFU) can ablate tumors via cavitation effects, however, achieving these effects typically requires an extremely high cavitation threshold. In this study, we utilized widely used perfluorohexane nanodroplets (NDs-PFH) to effectively lower the cavitation threshold. The tumor cell debris generated by the combination of NDs-PFH and mHIFU not only induced immunogenic cells death but also activated antitumor immune responses within the tumor microenvironment. Additionally, our findings demonstrated that this combination elicited a significant abscopal effect and enhanced the efficacy of immunotherapy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
文献相关原料
公司名称
产品信息
阿拉丁
1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DPPE-MPEG2000)
阿拉丁
perfluorohexane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信