Learning to build low-field MRIs for remote northern communities.

Frontiers in neuroimaging Pub Date : 2025-01-17 eCollection Date: 2024-01-01 DOI:10.3389/fnimg.2024.1521517
Gordon E Sarty, Logi Vidarsson, Christopher Hansen, Keifer Corrigal, Lionel Sutherland, Millie Jamieson, Micheal Hogue, Haile Kassahun, William Greyeyes, David Teixeira, Lawrence Goertzen, Jonathan McEvoy, Mark Pollard
{"title":"Learning to build low-field MRIs for remote northern communities.","authors":"Gordon E Sarty, Logi Vidarsson, Christopher Hansen, Keifer Corrigal, Lionel Sutherland, Millie Jamieson, Micheal Hogue, Haile Kassahun, William Greyeyes, David Teixeira, Lawrence Goertzen, Jonathan McEvoy, Mark Pollard","doi":"10.3389/fnimg.2024.1521517","DOIUrl":null,"url":null,"abstract":"<p><p>Low-field Magnetic Resonance Imaging (MRI) has the potential to provide autonomous accessible neuroimaging in remote communities, particularly in the Canadian north. Remoteness necessitates that these MRIs be built and maintained within the communities. This approach not only ensures that the MRIs remain operational but will also allow the youth from the communities to pursue technical careers at home. The first step in this vision is to establish that the technical resources needed for building MRIs are available in remote communities and to establish an educational program that will give students the required technical skills. Over the summer of 2024, a team of students working within an Aircraft Maintenance Engineering (AME) program built the hardware for a wrist-sized prototype MRI. The student team included a high school student, AME students, engineering students and a post doctoral fellow. The skills required to maintain aircraft, namely 3D printing, sheet metal work and electrical harness building, were sufficient to build a low-field MRI. The prototype built was a radio frequency (RF) encoding MRI, whose design was optimized for eventual use in space, but the techniques and procedures developed are applicable to other MRI designs. Furthermore the breadth of students from high school to the post doctoral fellow level facilitated an extremely rich learning environment for the students while they focused on the task of designing and building the prototype MRI. Educational programs around building low-field MRIs can be created at all levels.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1521517"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782269/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2024.1521517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-field Magnetic Resonance Imaging (MRI) has the potential to provide autonomous accessible neuroimaging in remote communities, particularly in the Canadian north. Remoteness necessitates that these MRIs be built and maintained within the communities. This approach not only ensures that the MRIs remain operational but will also allow the youth from the communities to pursue technical careers at home. The first step in this vision is to establish that the technical resources needed for building MRIs are available in remote communities and to establish an educational program that will give students the required technical skills. Over the summer of 2024, a team of students working within an Aircraft Maintenance Engineering (AME) program built the hardware for a wrist-sized prototype MRI. The student team included a high school student, AME students, engineering students and a post doctoral fellow. The skills required to maintain aircraft, namely 3D printing, sheet metal work and electrical harness building, were sufficient to build a low-field MRI. The prototype built was a radio frequency (RF) encoding MRI, whose design was optimized for eventual use in space, but the techniques and procedures developed are applicable to other MRI designs. Furthermore the breadth of students from high school to the post doctoral fellow level facilitated an extremely rich learning environment for the students while they focused on the task of designing and building the prototype MRI. Educational programs around building low-field MRIs can be created at all levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信