Selective catalytic hydrogenation of C2H2 from plasma-driven CH4 coupling without extra heat: mechanistic insights from micro-kinetic modelling and reactor performance.

EES catalysis Pub Date : 2025-01-16 DOI:10.1039/d4ey00203b
Eduardo Morais, Fabio Cameli, Georgios D Stefanidis, Annemie Bogaerts
{"title":"Selective catalytic hydrogenation of C<sub>2</sub>H<sub>2</sub> from plasma-driven CH<sub>4</sub> coupling without extra heat: mechanistic insights from micro-kinetic modelling and reactor performance.","authors":"Eduardo Morais, Fabio Cameli, Georgios D Stefanidis, Annemie Bogaerts","doi":"10.1039/d4ey00203b","DOIUrl":null,"url":null,"abstract":"<p><p>We study the selective catalytic hydrogenation of C<sub>2</sub>H<sub>2</sub>, the main product from non-oxidative CH<sub>4</sub> coupling in gas-phase plasmas, to C<sub>2</sub>H<sub>4</sub>, a cornerstone of the global chemical industry, by experiments and temperature-dependent micro-kinetic modelling. The model is validated against new experimental data from a nanosecond pulsed plasma reactor integrated with a downstream catalytic bed consisting of Pd/Al<sub>2</sub>O<sub>3</sub>. We explore the effects of varying Pd loadings (0.1, 0.5, and 1 wt%) on the catalyst activity and the C<sub>2</sub>H<sub>4</sub>/C<sub>2</sub>H<sub>6</sub> product distribution. Consistent with the experimental data, our surface micro-kinetic model shows that while higher Pd loadings lower the catalyst activation temperature for C<sub>2</sub>H<sub>2</sub> conversion, they also induce over-hydrogenation to C<sub>2</sub>H<sub>6</sub> at lower temperatures and increase oligomerisation in the experiments, which are detrimental to the C<sub>2</sub>H<sub>4</sub> yield. The model also elucidates reaction mechanisms and pathways across different temperature regimes, expanding our understanding of the hydrogenation process beyond the experimental range. Besides highlighting the importance of optimising the metal loading to balance C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> selectivity, our findings demonstrate the effective implementation of post-plasma catalysis using a simple catalyst bed heated by hot gas from the plasma region. This study opens possibilities for testing different plasma sources, catalysts, gas flow magnitude and patterns, and catalyst bed-to-plasma distances.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4ey00203b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the selective catalytic hydrogenation of C2H2, the main product from non-oxidative CH4 coupling in gas-phase plasmas, to C2H4, a cornerstone of the global chemical industry, by experiments and temperature-dependent micro-kinetic modelling. The model is validated against new experimental data from a nanosecond pulsed plasma reactor integrated with a downstream catalytic bed consisting of Pd/Al2O3. We explore the effects of varying Pd loadings (0.1, 0.5, and 1 wt%) on the catalyst activity and the C2H4/C2H6 product distribution. Consistent with the experimental data, our surface micro-kinetic model shows that while higher Pd loadings lower the catalyst activation temperature for C2H2 conversion, they also induce over-hydrogenation to C2H6 at lower temperatures and increase oligomerisation in the experiments, which are detrimental to the C2H4 yield. The model also elucidates reaction mechanisms and pathways across different temperature regimes, expanding our understanding of the hydrogenation process beyond the experimental range. Besides highlighting the importance of optimising the metal loading to balance C2H4 and C2H6 selectivity, our findings demonstrate the effective implementation of post-plasma catalysis using a simple catalyst bed heated by hot gas from the plasma region. This study opens possibilities for testing different plasma sources, catalysts, gas flow magnitude and patterns, and catalyst bed-to-plasma distances.

等离子体驱动的CH4偶联在没有额外热量的情况下选择性催化加氢C2H2:来自微动力学建模和反应器性能的机理见解。
通过实验和温度依赖的微动力学模型,研究了气相等离子体中非氧化CH4偶联的主要产物C2H2选择性催化加氢到C2H4(全球化学工业的基石)的过程。该模型通过纳秒脉冲等离子体反应器与Pd/Al2O3下游催化床集成的新实验数据进行了验证。我们探索了不同Pd负载(0.1,0.5和1 wt%)对催化剂活性和C2H4/C2H6产物分布的影响。与实验数据一致,我们的表面微动力学模型表明,高Pd负载降低了C2H2转化的催化剂活化温度,同时在较低温度下诱导了C2H6的过氢化,增加了实验中低聚的现象,这不利于C2H4的产率。该模型还阐明了不同温度下的反应机制和途径,扩大了我们对加氢过程的理解,超出了实验范围。除了强调优化金属负载以平衡C2H4和C2H6选择性的重要性外,我们的研究结果还证明了使用等离子体区热气体加热的简单催化剂床可以有效地实现后等离子体催化。这项研究为测试不同的等离子体源、催化剂、气体流量大小和模式以及催化剂床到等离子体的距离提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信