Hanxu Ma , Yanjun Chen , Shunda Qiao , Ying He , Yufei Ma
{"title":"A high sensitive methane QEPAS sensor based on self-designed trapezoidal-head quartz tuning fork and high power diode laser","authors":"Hanxu Ma , Yanjun Chen , Shunda Qiao , Ying He , Yufei Ma","doi":"10.1016/j.pacs.2025.100683","DOIUrl":null,"url":null,"abstract":"<div><div>A high sensitive methane (CH<sub>4</sub>) sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using self-designed trapezoidal-head quartz tuning fork (QTF) and high power diode laser is reported for the first time in this paper. The trapezoidal-head QTF with low resonant frequency (<em>f</em><sub><em>0</em></sub>) of ∼ 9 kHz, serves as the detection element, enabling longer energy accumulation times. A diode laser with an output power of 10 mW is utilized as the excitation source. A Raman fiber amplifier (RFA) is employed to boost the diode laser power to 300 mW to increase the excitation intensity. Acoustic micro-resonators (AmRs) are designed and placed on both sides of the QTF to form an acoustic standing wave cavity, which increases the acoustic wave intensity and enhances the vibration amplitude of the QTF. Additionally, the long-term stability is analyzed by Allan deviation analysis. When the average time of the sensor system is increased to 150 s, the minimum detection limit (MDL) of the CH<sub>4</sub>-QEPAS sensor system can be improved to 15.5 ppb.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"42 ","pages":"Article 100683"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780171/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A high sensitive methane (CH4) sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) using self-designed trapezoidal-head quartz tuning fork (QTF) and high power diode laser is reported for the first time in this paper. The trapezoidal-head QTF with low resonant frequency (f0) of ∼ 9 kHz, serves as the detection element, enabling longer energy accumulation times. A diode laser with an output power of 10 mW is utilized as the excitation source. A Raman fiber amplifier (RFA) is employed to boost the diode laser power to 300 mW to increase the excitation intensity. Acoustic micro-resonators (AmRs) are designed and placed on both sides of the QTF to form an acoustic standing wave cavity, which increases the acoustic wave intensity and enhances the vibration amplitude of the QTF. Additionally, the long-term stability is analyzed by Allan deviation analysis. When the average time of the sensor system is increased to 150 s, the minimum detection limit (MDL) of the CH4-QEPAS sensor system can be improved to 15.5 ppb.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.