The value of AI for assessing longitudinal brain metastases treatment response.

IF 3.7 Q1 CLINICAL NEUROLOGY
Neuro-oncology advances Pub Date : 2025-01-10 eCollection Date: 2025-01-01 DOI:10.1093/noajnl/vdae216
Vincent Andrearczyk, Luis Schiappacasse, Matthieu Raccaud, Jean Bourhis, John O Prior, Michel A Cuendet, Andreas F Hottinger, Vincent Dunet, Adrien Depeursinge
{"title":"The value of AI for assessing longitudinal brain metastases treatment response.","authors":"Vincent Andrearczyk, Luis Schiappacasse, Matthieu Raccaud, Jean Bourhis, John O Prior, Michel A Cuendet, Andreas F Hottinger, Vincent Dunet, Adrien Depeursinge","doi":"10.1093/noajnl/vdae216","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Effective follow-up of brain metastasis (BM) patients post-treatment is crucial for adapting therapies and detecting new lesions. Current guidelines (Response Assessment in Neuro-Oncology-BM) have limitations, such as patient-level assessments and arbitrary lesion selection, which may not reflect outcomes in high tumor burden cases. Accurate, reproducible, and automated response assessments can improve follow-up decisions, including (1) optimizing re-treatment timing to avoid treating responding lesions or delaying treatment of progressive ones, and (2) enhancing precision in evaluating responses during clinical trials.</p><p><strong>Methods: </strong>We compared manual and automatic (deep learning-based) lesion contouring using unidimensional and volumetric criteria. Analysis focused on (1) agreement in size and RANO-BM categories, (2) stability of measurements under scanner rotations and over time, and (3) predictability of 1-year outcomes. The study included 49 BM patients, with 184 MRI studies and 448 lesions, retrospectively assessed by radiologists.</p><p><strong>Results: </strong>Automatic contouring and volumetric criteria demonstrated superior stability (<i>P</i> < .001 for rotation; <i>P</i> < .05 over time) and better outcome predictability compared to manual methods. These approaches reduced observer variability, offering reliable and efficient response assessments. The best outcome predictability, defined as 1-year response, was achieved using automatic contours and volumetric measurements. These findings highlight the potential of automated tools to streamline clinical workflows and provide consistency across evaluators, regardless of expertise.</p><p><strong>Conclusion: </strong>Automatic BM contouring and volumetric measurements provide promising tools to improve follow-up and treatment decisions in BM management. By enhancing precision and reproducibility, these methods can streamline clinical workflows and improve the evaluation of response in trials and practice.</p>","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"7 1","pages":"vdae216"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786217/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdae216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Effective follow-up of brain metastasis (BM) patients post-treatment is crucial for adapting therapies and detecting new lesions. Current guidelines (Response Assessment in Neuro-Oncology-BM) have limitations, such as patient-level assessments and arbitrary lesion selection, which may not reflect outcomes in high tumor burden cases. Accurate, reproducible, and automated response assessments can improve follow-up decisions, including (1) optimizing re-treatment timing to avoid treating responding lesions or delaying treatment of progressive ones, and (2) enhancing precision in evaluating responses during clinical trials.

Methods: We compared manual and automatic (deep learning-based) lesion contouring using unidimensional and volumetric criteria. Analysis focused on (1) agreement in size and RANO-BM categories, (2) stability of measurements under scanner rotations and over time, and (3) predictability of 1-year outcomes. The study included 49 BM patients, with 184 MRI studies and 448 lesions, retrospectively assessed by radiologists.

Results: Automatic contouring and volumetric criteria demonstrated superior stability (P < .001 for rotation; P < .05 over time) and better outcome predictability compared to manual methods. These approaches reduced observer variability, offering reliable and efficient response assessments. The best outcome predictability, defined as 1-year response, was achieved using automatic contours and volumetric measurements. These findings highlight the potential of automated tools to streamline clinical workflows and provide consistency across evaluators, regardless of expertise.

Conclusion: Automatic BM contouring and volumetric measurements provide promising tools to improve follow-up and treatment decisions in BM management. By enhancing precision and reproducibility, these methods can streamline clinical workflows and improve the evaluation of response in trials and practice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信